Email Alert  RSS
超浸润涂层在材料保护中的应用专栏

超浸润膜材料的制备方法及其在含油污水处理中的研究与应用状况

  • 骆文佳 ,
  • 李健 ,
  • 牛振华 ,
  • 李瓛 ,
  • 张析
展开
  • 1.西北矿冶研究院精细化工所,甘肃白银 730900;
    2.西北师范大学化学化工学院,甘肃兰州 730070
骆文佳(1994-),助理工程师,硕士,主要研究方向为膜材料的制备及应用,E-mail:wjluo94@126.com

收稿日期: 2022-12-20

  修回日期: 2023-01-15

  录用日期: 2023-02-14

  网络出版日期: 2023-07-14

基金资助

国家自然科学基金资助项目(51872245);霍英东教育基金(161044)资助

Preparation Method of Superwetting Membrane Materials and Their Research and Application Status in Oily Sewage Treatment

  • LUO Wen-jia ,
  • LI Jian ,
  • NIU Zhen-hua ,
  • LI Huan ,
  • ZHANG Xi
Expand
  • 1. Fine Chemical Institute, Northwest Research Institute of Mining and Metallurgy, Baiyin 730900, China;
    2. College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China

Received date: 2022-12-20

  Revised date: 2023-01-15

  Accepted date: 2023-02-14

  Online published: 2023-07-14

摘要

随着工业的不断发展,对含油污水进行处理以实现资源的回收和利用迫在眉睫。对含油污水而言,超浸润材料由于其高分离效率和低能耗而成为处理含油污水最有前景的材料之一。在各种处理方法中,膜分离法由于具有低能耗、绿色环保等优点成为未来最受欢迎的处理方法之一。介绍了膜表面浸润性的基本理论以及超浸润表面的制备方法,并进一步阐述了超浸润膜材料用于各类多油废水处理的研究状况,最后对其未来的发展趋势进行了展望。

本文引用格式

骆文佳 , 李健 , 牛振华 , 李瓛 , 张析 . 超浸润膜材料的制备方法及其在含油污水处理中的研究与应用状况[J]. 材料保护, 2023 , 56(6) : 27 -32 . DOI: 10.16577/j.issn.1001-1560.2023.0131

Abstract

With the continuous development of industry, it is urgent to treat oily sewage to achieve resource recovery and utilization. For oily sewage, superwetting materials have become one of the most promising materials for treating oily sewage, owing to their high separation efficiency and low energy consumption. Among various treatment methods, the membrane separation method becomes one of the most popular treatment methods in the future because of its low energy consumption and environmental protection. In this work, the basic theory of membrane surface wettability and the preparation method of superhydrophobic surfaces was reviewed, and the research status of the use of superwetting membrane materials for the treatment of various types of oily sewage was further elaborated. At last, the prospects for those future development trends were forecasted.

参考文献

[1] YANG X, WANG Z, SHAO L. Construction of Oil-Unidirectional Membrane for Integrated Oil Collection with Lossless Transportation and Oil-in-Water Emulsion Purification[J]. J Membrane Sci, 2018, 549: 67-74.
[2] ZENG X, QIAN L, YUAN X, et al. Inspired by Stenocara Beetles: from Water Collection to High-Efficiency Water-in-Oil Emulsion Separation[J]. ACS Nano, 2017, 11(1): 760-769.
[3] ZUO Y, ZHENG L, ZHAO C, et al. Micro-/Nanostructured Interface for Liquid Manipulation and its Applications[J]. Small, 2020, 16(9): 1903849.
[4] CAI Y, CHEN D, LI N, et al. A Smart Membrane with Antifouling Capability and Switchable Oil Wettability for High-Efficiency Oil/Water Emulsions Separation[J]. J Membrane Sci, 2018, 555: 69-77.
[5] SHI G, SHEN Y, MU P, et al. Effective Separation of Surfactant-Stabilized Crude Oil-in-Water Emulsions by Using Waste Brick Powder-Coated Membranes under Corrosive Conditions[J]. Green Chem, 2020, 22(4): 1 345-1 352.
[6] 李亚东, 徐 征, 范兴祥, 等. 冶金固体废弃物资源化处理与综合利用[J]. 化工设计通讯, 2021, 47(9): 170-171.
LI Y D, XU Z, FAN X X, et al. Resource treatment and comprehensive utilization of metallurgical solid waste[J]. Chemical Design Communication, 2021, 47(9): 170-171.
[7] SU C, LI Y, CAO H, et al. Novel PTFE Hollow Fiber Membrane Fabricated by Emulsion Electrospinning and Sintering for Membrane Distillation[J]. J Membrane Sci, 2019, 583: 200-208.
[8] WANG W, LIU R, CHI H, et al. Durable Superamphiphobic and Photocatalytic Fabrics: Tackling the Loss of Super-Non-Wettability due to Surface Organic Contamination[J]. ACS Appl Mater Interfaces, 2019, 11(38): 35 327-35 332.
[9] YONG J, CHEN F, YANG Q, et al. Superoleophobic Surfaces[J]. Chem Soc Rev, 2017, 46(14): 4 168-4 217.
[10] DOSHI B, SILLANPAA M, KALLIOLA S. A Review of Bio-Based Materials for Oil Spill Treatment[J]. Water Res, 2018, 135: 262-277.
[11] KAKADE B, MEHTA R, DURGE A, et al. Electric Field Induced, Superhydrophobic to Superhydrophilic Switching in Multiwalled Carbon Nanotube Papers[J]. Nano Lett, 2008, 8(9): 2 693-2 696.
[12] MANUKYAN G, OH J M, VAN DEN ENDE D, et al. Electrical Switching of Wetting States on Superhydrophobic Surfaces: A Route Towards Reversible Cassie-to-Wenzel Transitions[J]. Phys Rev Lett, 2011, 106(1): 014501.
[13] ZHANG R, LIU Y, HE M, et al. Antifouling Membranes for Sustainable Water Purification: Strategies and Mechanisms[J]. Chem Soc Rev, 2016,45(21): 5 888-5 924.
[14] LONG Y, SHEN Y, TIAN H, et al. Superwettable Coprinus Comatus Coated Membranes Used toward the Controllable Separation of Emulsified Oil/Water Mixtures[J]. J Membr Sci, 2018, 565: 85-94.
[15] LEE M W, AN S, LATTHE S S, et al. Electrospun Polystyrene Nanofiber Membrane with Superhydrophobicity and Superoleophilicity for Selective Separation of Water and Low Viscous Oil[J]. ACS Appl Mater Interfaces, 2013, 5(21): 10 597-10 604.
[16] LI J, WU R, JING Z, et al. One-Step Spray-Coating Process for the Fabrication of Colorful Superhydrophobic Coatings with Excellent Corrosion Resistance[J]. Langmuir, 2015, 31(39): 10 702-10 707.
[17] LI J, JING Z, YANG Y, et al. From Cassie State to Gecko State: A Facile Hydrothermal Process for the Fabrication of Superhydrophobic Surfaces with Controlled Sliding Angles on Zinc Substrates[J]. Surf Coatings Technol, 2014, 258: 973-978.
[18] SUN Y, GUO Z. Programming Multiphase Media Superwetting States in the Oil-Water-Air System: Evolutions in Hydrophobic-Hydrophilic Surface Heterogeneous Chemistry[J]. Adv Mater, 2020, 32(46): 2004875.
[19] TIE L, LI J, GUO Z, et al. Controllable Preparation of Multiple Superantiwetting Surfaces: From Dual to Quadruple Superlyophobicity[J]. Chem Eng J, 2019, 369: 463-469.
[20] LI J, LI D, YANG Y, et al. A Prewetting Induced Underwater Superoleophobic or Underoil (Super) Hydrophobic Waste Potato Residue-Coated Mesh for Selective Efficient Oil/Water Separation[J]. Green Chem, 2016, 18(2): 541-549.
[21] CHEN F, LU Y, LIU X, et al. Table Salt as a Template to Prepare Reusable Porous Pvdf-Mwcnt Foam for Separation of Immiscible Oils/Organic Solvents and Corrosive Aqueous Solutions[J]. Adv Funct Mater, 2017, 27(41): 1702926.
[22] HOU Y, LI R, LIANG J. Superhydrophilic Nickel-Coated Meshes with Controllable Pore Size Prepared by Electrodeposition from Deep Eutectic Solvent for Efficient Oil/Water Separation[J]. Sep Purif Technol, 2017: 192: 21-29.
[23] 袁 腾,陈 卓,周显宏,等. 基于超亲水超疏油原理的网膜及其在油水分离中的应用[J]. 化工学报, 2014,65(6): 1 943-1 951.
YUAN T ,CHEN Z, ZHOU X H, et al. Retinal membrance based on superhydrophilic and superoleophobic principle and its application in oil-water separation[J]. Acta Chemologica Sinica, 2014,65(6): 1 943-1 951.
[24] GE J L, ZONG D D, JIN Q, et al. Biomimetic and Superwettable Nanofibrous Skins for Highly Efficient Separation of Oil-in-Water Emulsions[J]. Adv Funct Mater, 2018, 28(10): 1705051.
[25] LIU Y, SU Y, GUAN J, et al. Asymmetric Aerogel Membranes with Ultrafast Water Permeation for the Separation of Oil-in-Water Emulsion[J]. ACS Appl Mater Interfaces, 2018, 10(31): 26 546-26 554.
[26] GU J, XIAO P, CHEN J, et al. Robust Preparation of Superhydrophobic Polymer/Carbon Nanotube Hybrid Membranes for Highly Effective Removal of Oils and Separation of Water-in-Oil Emulsions[J]. J Mater Chem A, 2014, 2(37): 15 211-15 648.
[27] LI J, XU C, TIAN H, et al. Blend-Electrospun Poly(Vinylidene Fluoride)/Stearic Acid Membranes for Efficient Separation of Water-in-Oil Emulsions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538: 494-499.
[28] GAO C, SUN Z, LI K, et al. Integrated Oil Separation and Water Purification by a Double-Layer TiO2-Based Mesh[J]. Energy Environ Sci, 2013, 6(4): 1 147-1 151.
文章导航

/