[1] 方学锋. 铝合金基体等离子喷涂陶瓷涂层结合性能研究[D]. 南京: 河海大学, 2006.
FANG X F. Study on the Bonding Performance of Plasma Sprayed Ceramic Coating on Alumminum Alloys Substrate[D]. Nanjing: Hohai University, 2006.
[2] MALANG S, BORGSTEDT H U, FARNUM E H, et al. Development of insulating coatings for liquid-metal blankets[J]. Fusion Engineering & Design, 1995, 27: 570-586.
[3] MATEJICEK J, CHRASKA P, LINKE J. Thermal spray coatings for fusion applications review[J]. Journal of Thermal Spray Technology, 2007, 16(1): 64-83.
[4] OLDING T, SAYER M, BARROW D. Ceramic Sol-gel Composite Coatings for Electrical Insulation[J]. Thin Solid Films, 2001, 398(1): 581-586.
[5] 马 壮, 曲文超, 李智超, 等. 热化学反应喷涂Al2O3基复合陶瓷涂层的制备及其性能[J]. 中国有色金属学报, 2009, 19(6): 1 093-1 099.
MA Z, QU W C, LI Z C, et al. Preparation and properties of Al2O3 based composite ceramic coating on pure copper surface by thermo-chemical reaction spraying[J]. The Chinese Journal of Nonferrous Metals, 2009, 19(6): 1 093-1 099.
[6] 陈冀彦, 胡树兵, 籍龙波, 等. RAFM与316L钢等离子喷涂Al2O3电绝缘涂层研究[J]. 材料热处理学报, 2011, 32(4): 126-132.
CHEN J Y, HU S B, JI L B, et al. Study of plasma sprayed Al2O3 insulating coatings on RAFM and 316L steel[J]. Transactions of Materials and Heat Treatment, 2011, 32(4): 126-132.
[7] 邓春明, 周克崧, 刘 敏, 等. 低压等离子喷涂氧化铝涂层的特性[J]. 无机材料学报, 2009, 24(1): 117-121.
DENG C M, ZHOU K S, LIU M, et al. Characteristics of low pressure plasma sprayed alumina coating[J]. Journal of Inorganic Materials, 2009, 24(1): 117-121.
[8] 陈 萌, 刘昌永, 周 亮, 等. 等离子喷涂氧化铝基复合涂层研究进展[J]. 表面技术, 2017, 46(11): 241-247.
CHEN M, LIU C Y, ZHOU L, et al. Al2O3 based composite coatings prepared by plasma spraying[J]. Surface Technology, 2017, 46(11): 241-247.
[9] 杨元政, 刘正义, 庄育智. 等离子喷涂Al2O3陶瓷涂层的结构与组织特征[J]. 兵器材料科学与工程, 2000(3): 7-11.
YANG Y Z, LIU Z Y , ZHUANG Y Z. Structure of plasma-sprayed Al2O3 ceramiac coating[J]. Ordnance Material Science and Engineering, 2000(3): 7-11.
[10] 胡 勇, 牛博龙, 梁爱民, 等. 等离子喷涂制备不同晶型氧化铝涂层的微观结构和摩擦磨损性能[J]. 兰州理工大学学报, 2019, 45(3): 6-10.
HU Y, NIU B L, LIANG A M, et al.Microstruture of coating prepared by plasma spraying with different crystalline alumina and its friction-wear behavior[J]. Journal of Lanzhou University of Technology, 2019, 45(3): 6-10.
[11] 杨 焜, 牛少鹏, 邓春明, 等. 等离子喷涂 Al2O3-3%TiO2涂层结构及加载绝缘性能[J]. 表面技术, 2020, 49(8): 63-72.
YANG K, NIU S P, DENG C M, et al. Microstructure and load-insulation performance of plasma-sprayed Al2O3-3%TiO2 coating[J]. Surface Technology, 2020, 49(8): 63-72.
[12] BANNIER E, VICENT M, RAYON E, et al. Effect of TiO2 addition on the microstructure and nanomechanical properties of Al2O3 suspension plasma sprayed coatings[J].Applied Surface Science, 2014, 316(1): 141-146.
[13] 郭 瑞. 等离子喷涂AT/Al2O3复合涂层的结构优化与绝缘性能[D]. 秦皇岛: 燕山大学, 2013.
GUO R. Structure optimization and insulation properties of plasma sprayed AT/Al2O3 composite coating[D]. Qinhuangdao: Yanshan University, 2013.
[14] 丛 霄. 等离子喷涂氧化铝陶瓷涂层介电性能研究[D]. 大连: 大连海事大学, 2012.
CONG X. The effect of the crystalline phase on the dielectric properties of plasma sprayed Al2O3 coatings[D]. Dalian: Dalian Maritime University, 2012.
[15] 李 力. 喷涂距离对等离子喷涂Al2O3陶瓷涂层结构性能的影响[J]. 航天制造技术, 2017(4): 52-53.
LI L. Influences of Spray Distances on Microstructure and Properties of Alumina Coatings[J]. Aerospace Manufacturing Technology, 2017(4): 52-53.
[16] 季 珩, 黄利平, 黄静琪, 等. 大气等离子喷涂氧化铝涂层制备和介电性能研究[J]. 热喷涂技术, 2010, 2(4): 5-8.
JI H, HUANG L P, HUANG J Q, et al. Study on Preparation and Dielectric Property of Al2O3 Coating Deposited by Plasma Spraying[J]. Thermal Spray Technology, 2010, 2(4): 5-8.
[17] 闫祖鹏, 张世宏, 温永红, 等. 基于正交实验设计方法的APS喷涂Al2O3涂层性能的研究[J]. 热喷涂技术, 2019, 11(3): 44-50.
YAN Z P, ZHANG S H, WEN Y H, et al. Study on Properties of APS Sprayed Al2O3 Coatings Based on Orthogonal Design Method[J] . Thermal Spray Technology, 2019, 11(3): 44-50.
[18] 蔡 林. 空气等离子喷涂纳米氧化铝涂层组织、性能研究[D]. 大连: 大连海事大学, 2019.
CAI L. Research on microstructure andpaoperties of air plasma sprayed nano-alumina coating[D]. Dalian: Dalian Maritime University, 2019.
[19] 路学成. 等离子喷涂纳米Al2O3基陶瓷涂层制备及性能研究[D].天津: 河北工业大学, 2015.
LU X C. Fabrication and properties of plasma sprayed alumina-based ceramiac nanocoatings[D]. Tianjin: Heibei University of Technology, 2015.
[20] 武 创, 郗雨林, 王其红, 等. 纳米陶瓷涂层的性能及应用[J]. 材料开发与应用, 2011, 26(3): 78-83.
WU C, XI Y L, WANG Q H, et al. Properties and Applications of Nanostructured Ceramic Coatings[J]. Development and Application of Materials, 2011, 26(3): 78-83.
[21] 吴艳鹏,李文戈,赵远涛,等.大气等离子喷涂Ni5Al/Al2O3-3%TiO2复合结构涂层的显微组织与力学性能[J].机械工程材料,2019,43(12):34-40.
WU Y P, LI W G, ZHAO Y T, et al. Microstructure and mechanical properties of Atmospheric Plasma sprayed Ni5Al/Al2O3-3%TiO2 composite coatings[J]. Materials for Mechanical Engineering, 2019,43 (12) : 34-40.
[22] FAUCHAIS P, MONTAVON G, VARDELLE M, et al. Developments in direct current plasma spraying[J]. Surface and Coatings Technology, 2006, 201(5): 1 908-1 921.
[23] PAVEL C, JOSEF S, KAREL N. Influence of chemical composition on dielectric properties of Al2O3 and ZrO2 plasma deposits[J]. Ceramics International, 2003, 29(5): 527-532.
[24] 饶晓晓,罗 成,胡树兵,等. 等离子喷涂氧化铝基陶瓷涂层的性能研究[J].热加工工艺,2010,39(20):99-102.
RAO X X, LUO C, HU S B, et al. Study on the properties of plasma sprayed Alumina ceramic coatings[J].Hot Working Technology, 2010,39 (20) : 99-102.
[25] 刘丽斌, 万 磊, 李海洋, 等. 高湿度对轴承外圈等离子喷涂氧化铝涂层绝缘性能的影响[J]. 轴承,2020(9): 29-32.LIU L B, WAN L, LI H Y, et al. Effect of High Humidity on Insulation Performance of Plasma Sprayed Alumina Coating on Bearing Outer Ring[J]. Bearing, 2020(9): 29-32.
[26] 郭 瑞, 梁 波, 赵晓兵, 等.等离子喷涂Al2O3 涂层的电击穿机理[J]. 航空材料学报, 2014, 34(5): 43-48.
GUO R, LIANG B, ZHAO X B, et al. Electrical Insulating Properties of Plasma Sprayed Al2O3 Coating[J]. Journal of Aeronauticla Materials, 2014, 34(5): 43-48.
[27] 张 玲, 冯 颖, 马 越. 孔隙率对Al2O3陶瓷涂层绝缘轴承绝缘性能的影响[J]. 轴承, 2017(6): 45-47.
ZHANG L, FENG Y, MA Y. Influence of porosity on insulation performance of insulation bearings with Al2O3 ceramic coatings[J]. Bearing, 2017(6): 45-47.
[28] 卜珍宇,赵晓琴,郭向东,等. 电机轴承防护措施及Al2O3陶瓷绝缘涂层研究现状[J]. 表面技术,2021,50(5):51-59.
BU Z Y, ZHAO X Q, GUO X D, et al. Research status of motor bearing protection measures and Al2O3 ceramic insulation coating[J]. Surface Technology, 2021, 50(5) : 51-59.