Today is Email Alert  RSS

Research Progress on High Pressure Erosion-Corrosion of Pipeline Steels in CO2 Environment

  • LYU Tong ,
  • ZENG Li ,
  • HU Dao-lin
Expand
  • a. School of Mechanical and Electrical Engineering, b. School of Optical Information and Energy Engineering, School of Mathematics and Physics, Wuhan Institute of Technology, Wuhan 430205, China

Received date: 2022-12-25

  Revised date: 2023-01-17

  Accepted date: 2023-02-19

  Online published: 2023-07-14

Abstract

Multiple flow erosion-corrosion under high pressure environment is a key problem for safe operation of oil gas gathering and transporting pipelines. For the high pressure erosion-corrosion failure problem of the gathering and transporting pipeline in CO2 environment, the high pressure erosion-corrosion apparatuses of gathering and transportation pipeline in CO2 environment were elaborated, mainly including high pressure jet impingement system, high pressure rotor rotating system and high pressure loop test system. The mechanism of high pressure erosion-corrosion was reviewed, and it was pointed out that erosion-corrosion was controlled by electrochemical corrosion and erosion wear. Besides, the effects of factors such as flow rate, velocity of solid particles, size of solid particles, temperature, pH value, and CO2 partial pressure on high pressure erosion-corrosion were summarized. Finally, the development direction of high pressure erosion-corrosion study of the gathering and transporting pipeline in CO2 environment were prospected.

Cite this article

LYU Tong , ZENG Li , HU Dao-lin . Research Progress on High Pressure Erosion-Corrosion of Pipeline Steels in CO2 Environment[J]. Materials Protection, 2023 , 56(6) : 164 -172 . DOI: 10.16577/j.issn.1001-1560.2023.0148

References

[1] ZHANG J X, FAN J C, XIE Y J, et al. Research on erosion of metal materials for high pressure pipelines[J]. Advanced Materials Research, 2012, 482-484: 1 592-1 595.
[2] 付秀勇,徐久龙,李 军,等. 凝析气田集输管道的冲刷腐蚀与防护[J]. 石油化工腐蚀与防护, 2008, 25(2): 20-23.
FU X Y, XU J L, LI J, et al. Erosion corrosion and protection of gathering pipeline in condensate gas field[J]. Corrosion & Protection in Petrochemical Industry, 2008, 25(2): 20-23.
[3] 姜晓霞,李诗卓,李 曙. 金属的腐蚀磨损[M]. 北京:化学工业出版社,2003: 1.
JIANG X X, LI S Z, LI S. Corrosion and wear of metals[M]. Beijing: Chemical Industry Press, 2003:1.
[4] ZHANG L, LI X G, DU C W, et al. Corrosion and stress corrosion cracking behavior of X70 pipeline steel in a CO2-containing solution[J]. Journal of Materials Engineering and Performance, 2009, 18(3): 319-323.
[5] GAO K, YU F, PANG X, et al. Mechanical properties of CO2 corrosion product scales and their relationship to corrosion rates[J]. Corrosion Science, 2008, 50(10): 2 796-2 803.
[6] DUGSTAD A. Fundamental aspects of CO2 metal loss corrosion — part Ⅰ: mechanism:Proceedings of the NACE International Corrosion Conference & Expo[C]. Huston:[s.n.],2006.
[7] WEI L, PANG X, LIU C, et al. Formation mechanism and protective property of corrosion product scale on X70 steel under supercritical CO2 environment[J]. Corrosion Science, 2015, 100: 404-420.
[8] HASSANI S, ROBERTS K P, SHIRAZI S A, et al. Flow loop study of NaCl concentration effect on erosion, corrosion, and erosion-corrosion of carbon steel in CO2-saturated systems[J]. Corrosion, 2012, 68(2): 026001.
[9] ZHANG G A, ZENG Y, GUO X P, et al. Electrochemical corrosion behavior of carbon steel under dynamic high pressure H2S/CO2 environment[J]. Corrosion Science, 2012, 65: 37-47.
[10] SHADLEY J R, SHIRAZI S A, DAYALAN E, et al. Prediction of erosion-corrosion penetration rate in a carbon dioxide environment with sand[J]. Corrosion, 1998, 54(12): 972-978.
[11] ISLAM M A, FARHAT Z. Erosion-corrosion mechanism and comparison of erosion-corrosion performance of API steels[J]. Wear, 2017, 376-377: 533-541.
[12] ZHANG G A, LIU D, LI Y Z, et al. Corrosion behaviour of N80 carbon steel in formation water under dynamic supercritical CO2 condition[J]. Corrosion Science, 2017, 120: 107-120.
[13] MALKA R, Nešić S, GULINO D A. Erosion-corrosion and synergistic effects in disturbed liquid-particle flow[J]. Wear, 2007, 262(7/8): 791-799.
[14] OKONKWO PAUL C, SHAKOOR R A, MOHAMED A M A. Synergistic Erosion-Corrosion Behavior of API X120 Steel[J]. Materials Today: Proceedings, 2020, 32: 37-43.
[15] AMINUL ISLAM M, FARHAT Z N, AHMED E M, et al. Erosion enhanced corrosion and corrosion enhanced erosion of API X-70 pipeline steel[J]. Wear, 2013, 302(1/2): 1 592-1 601.
[16] GUO H X, LU B T, LUO J L. Interaction of mechanical and electrochemical factors in erosion–corrosion of carbon steel[J]. Electrochimica Acta, 2005, 51(2): 315-323.
[17] Nešić S, POSTLETHWAITE J, OLSEN S J. An electrochemical model for prediction of corrosion of mild steel in aqueous carbon dioxide solutions[J]. Corrosion Science, 1996, 52(4): 280-294.
[18] ZHANG Y, PANG X, QU S, et al. Discussion of the CO2 corrosion mechanism between low partial pressure and supercritical condition[J]. Corrosion Science, 2012, 59: 186-197.
[19] LUQMAN A, MOOSAVI A. The impact of CO2 injection for EOR & its breakthrough on corrosion and integrity of new and existing facilities:Abu Dhabi International Petroleum Exhibition & Conference[C]. Abu Dhabi:[s.n.], 2016.
[20] ELGADDAFI R, NAIDU A, AHMED R, et al. Modeling and experimental study of CO2 corrosion on carbon steel at elevated pressure and temperature[J]. Journal of Natural Gas Science and Engineering, 2015, 27: 1 620-1 629.
[21] CHOI Y S, Nešić S. Determining the corrosive potential of CO2 transport pipeline in high pCO2-water environments[J]. International Journal of Greenhouse Gas Control, 2011, 5(4): 788-797.
[22] TANUPABRUNGSUN T, YOUNG D, BROWN B, et al. Construction and verification of Pourbaix diagrams for CO2 corrosion of mild steel valid up to 250 ℃: The Corrosion 2012[C]. Salt Lake City:[s.n.], 2012.
[23] Nešić S, LI H, SORMAZ D, et al. A free open source mechanisitc model for prediction of mild steel corrosion:17th international corrosion congress & expo[C]. Houston:[s.n.],2008.
[24] Nešić S, LEE J, RUZIC V. A mechanistic model of iron carbonate film growth and the effect on CO2 corrosion of mild steel: Proceedings of the CORROSION 2002[C]. Denver:[s.n.], 2002.
[25] Nešić S, LEE K L J. A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films—part 3: Film growth model[J]. Corroison, 2003, 59(7):616-628.
[26] Nešić S. Effects of multiphase flow on internal CO2 corrosion of mild steel pipelines[J]. Energy & Fuels, 2012, 26(7): 4 098-4 111.
[27] LI J L, MA H X, ZHU S D, et al. Erosion resistance of CO2 corrosion scales formed on API P110 carbon steel[J]. Corrosion Science, 2014, 86: 101-107.
[28] KUMAGAI A, YOKOYAMA C H. Viscosities of aqueous NaCl solutions containing CO2 at high pressures[J]. Journal of Chemical and Engineering Data, 1999, 44(2): 227-229.
[29] HAMIDI H, MOHD ATIB N F A, AZDARPOUR A, et al. Study of CO2 solubility in brine under different temperatures and pressures[J]. Advanced Materials Research, 2015, 1 113: 440-445.
[30] NOR A M, SUHOR M F, MOHAMED M F, et al. Corrosion of carbon steel in high CO2 environment: flow effect: Procedings of the NACE Corroison 2011 Conference[C]. Houston:[s.n.], 2011.
[31] 樊学华,柳 伟,祝亚茹,等. 高温高压条件下流速对X70钢CO2冲刷腐蚀行为的影响[J].表面技术,2020, 49(12): 306-314.
FAN X H, LIU W, ZHU Y R, et al. Influence of impingement velocity on CO2 erosion-corrosion behaviour of X70 steel at high-temperature and high-pressure conditions[J]. Surface Technology, 2020, 49(12): 296-304.
[32] QIU Z, XIONG C, YE Z, et al. Corrosion behavior of N80 steel in CO2-saturated formation water[J]. Anti-Corrosion Methods and Materials, 2019, 66(4): 464-470.
[33] TAN Z, YANG L, ZHANG D, et al. Development mechanism of internal local corrosion of X80 pipeline steel[J]. Journal of Materials Science & Technology, 2020, 49: 186-201.
[34] RINCON H E, SHADLEY J R, RYBICKI E F, et al. Erosion-corrosion of carbon steel in CO2 saturated multiphase flows containing sand: Proceedings of the NACE International CORROSION/2006 Conference[C]. Sandiego:[s.n.], 2006.
[35] LIU W, DOU J, LU S, et al. Effect of silty sand in formation water on CO2 corrosion behavior of carbon steel[J]. Applied Surface Science, 2016, 367: 438-448.
[36] OBOT I B. Under-deposit corrosion on steel pipeline surfaces: mechanism, mitigation and current challenges[J]. Journal of Bio- and Tribo-Corrosion, 2021, 7(2):1-14.
[37] SHADLEY J R, SHIRAZI S A, DAYALAN E, et al. Erosion-corrosion of a carbon steel elbow in a carbon dioxide Environment[J]. Corrosion-Us, 1996, 52(9):714-723.
[38] TANG G A T K, FOO H C Y, TAN I S, et al. Influence of flow limiter and grain shape factor of sand particles on erosion activity in pipeline[J]. IOP Conference Series: Materials Science and Engineering, 2020, 943: 012024.
[39] AL-BUKHAITI M A, ABOUEL-KASEM A, EMARA K M, et al. Particle shape and size effects on slurry erosion of AISI 5117 steels[J]. Journal of Tribology, 2016, 138(2): 024503.
[40] TOOR I, IRSHAD H, BADR H, et al. The effect of impingement velocity and angle variation on the erosion corrosion performance of API 5L-X65 carbon steel in a flow loop[J]. Metals, 2018, 8(6): 402.
[41] LI J L, ZHU S D, QUN C T. Abrasion resistances of CO2 corrosion scales formed at different temperatures and their relationship to corrosion behaviour[J]. Corrosion Engineering, Science and Technology, 2013, 49(1): 73-79.
[42] SUN W, Nešić S, WOOLLAM R C. The effect of temperature and ionic strength on iron carbonate (FeCO3) solubility limit[J]. Corrosion Science, 2009, 51(6): 1 273-1 276.
[43] YIN Z F, FENG Y R, ZHAO W Z, et al. Effect of temperature on CO2 corrosion of carbon steel[J]. Surface and Interface Analysis, 2009, 41(6): 517-523.
[44] ELGADDAFI R, AHMED R, OSISANYA S. Modeling and experimental study on the effects of temperature on the corrosion of API carbon steel in CO2-Saturated environment[J]. Journal of Petroleum Science and Engineering, 2021, 196:107816.
[45] YE Z R, QIU Z C, YI R, et al. Effect of temperature on corrosion behaviour of N80 steel in CO2-saturated formation water[J]. IOP Conference Series: Materials Science and Engineering, 2019, 504(1):012040.
[46] FRANCKE H, THORADE M. Density and viscosity of brine: An overview from a process engineers perspective[J]. Chemie der Erde - Geochemistry, 2010, 70(S3): 23-32.
[47] HU X, NEVILLE A. CO2 erosion-corrosion of pipeline steel (API X65) in oil and gas conditions—A systematic approach[J]. Wear, 2009, 267(11): 2 027-2 032.
[48] NESIC S, NYBORG R, STANGELAND A, et al. Mechanistic modeling for CO2 corrosion with protective iron carbonate films: Proceedings of the CORROSION 2001[C]. Houston:[s.n.], 2001.
[49] MUTAHHAR F, AITHAN G, ISKI E V, et al. Mechanistic modeling of erosion–corrosion for carbon steel[M].[S.l.]:Trends in Oil and Gas Corrosion Research and Technologies, 2017: 749-763.
[50] MASAKATSU U. Potential pH diagram at elevated temperatures for metal-CO2/H2S-water systems and the application for the corrosion of pure iron[J]. Zairyo-to-Kankyo, 2009, 44(3): 142-150.
[51] HONARVAR NAZARI M, ALLAHKARAM S R, KERMANI M B. The effects of temperature and pH on the characteristics of corrosion product in CO2 corrosion of grade X70 steel[J]. Materials & Design, 2010, 31(7): 3 559-3 563.
[52] SNESIC S, WANG S, GEORGE K. High pressure CO2 corrosion electrochemistry and the effect of acetic acid: Proceedings of the CORROSION 2004[C]. New Orleans:[s.n.], 2004.
[53] YAN W, HUANG S, STENBY E H. Measurement and modeling of CO2 solubility in NaCl brine and CO2–saturated NaCl brine density[J]. International Journal of Greenhouse Gas Control, 2011, 5(6): 1 460-1 477.
[54] MOHAMED M F, NOR A M, SUHOR M F, et al. Water chemistry for corrosion prediction in high pressure CO2 environments: Proceedings of the NACE International corrosion conference & expo[C]. Houston:[s.n.], 2011.
[55] RAMACHANDRAN S, CAMPBELL S, WARD M B. The interactions and properties of corrosion inhibitors with byproduct layers: Proceedings of the CORROSION 2000[C]. Orlando:[s.n.], 2000.
[56] SONG F M. Predicting the mechanisms and crack growth rates of pipelines undergoing stress corrosion cracking at high pH[J]. Corrosion Science, 2009, 51(11): 2 657-2 674.
Outlines

/