[1] WANG D,BIERWAGEN G P. Sol-gel coatings on metals for corrosion protection[J]. Progress in Organic Coatings, 2009, 64 (4): 327-338.
[2] EJENSTAM L, OVASKAINEN L, RODRIGUEZ-MEIZOSO I, et al. The effect of superhydrophobic wetting state on corrosion protection - The AKD example[J]. Journal of Colloid and Interface Science, 2013, 412: 56-64.
[3] 侯保荣. 腐蚀成本与经济发展[J]. 中国科技产业, 2020(2): 21-22.
HOU B R. Corrosion cost and Economic Development[J]. China Science and Technology Industry, 2020(2): 21-22.
[4] 杨晓娜. Q235碳钢表面超疏水自修复防腐蚀涂层的制备及其性能研究[D]. 吉林:吉林大学, 2021.
YANG X N. Preparationg and properties of self-healing superhydrophobic coating on carbon steel Q235[D]. Jilin:Jilin University, 2021.
[5] MOMEN G, FARZANEH M. Facile approach in the development of icephobic hierarchically textured coatings as corrosion barrier[J]. Applied Surface Science, 2014, 299: 41-46.
[6] WANG P, ZHANG D, LU Z. Advantage of super-hydrophobic surface as a barrier against atmospheric corrosion induced by salt deliquescence[J]. Corrosion Science, 2015, 90: 23-32.
[7] JIANG Z, WANG X, JIA H, et al. Superhydrophobic Polytetrafluoroethylene/Heat-Shrinkable Polyvinyl Chloride Composite Film with Super Anti-Icing Property[J]. Polymers, 2019, 11(5): 805.
[8] WENG C, CHANG C, PENG C, et al. Advanced Anticorrosive Coatings Prepared from the Mimicked Xanthosoma Sagittifolium-leaf-like Electroactive Epoxy with Synergistic Effects of Superhydrophobicity and Redox Catalytic Capability[J]. Chemistry of Materials, 2011, 23(8): 2 075-2 083.
[9] CHAPMAN J, LE NOR L, BROWN R, et al. Antifouling performances of macro-to micro-to nano-copper materials for the inhibition of biofouling in its early stages[J]. Journal of Materials Chemistry B, 2013, 1(45): 6 194-6 200.
[10] BROWN R, RUSSELL S, MAY S, et al. Reproducible Superhydrophobic PVC Coatings; Investigating the Use of Plasticizers for Early Stage Biofouling Control[J]. Advanced Engineering Materials, 2017, 19 (7): 1700053.
[11] GHASEMI N, SEYFI J, ASADOLLAHZADEH M J. Imparting superhydrophobic and antibacterial properties onto the cotton fabrics: synergistic effect of zinc oxide nanoparticles and octadecanethiol[J]. Cellulose, 2018, 25(7): 4 211-4 222.
[12] SEYFI J, PANAHI-SARMAD M, ORAEIGHODOUSI A, et al. Antibacterial superhydrophobic polyvinyl chloride surfaces via the improved phase separation process using silver phosphate nanoparticles[J]. Colloids and Surfaces B: Biointerfaces, 2019, 183: 110438.
[13] LI H,YU S. A robust superhydrophobic surface and origins of its self-cleaning properties[J]. Applied Surface Science, 2017, 420: 336-345.
[14] LATTHE S S, SUTAR R S, KODAG V S, et al. Self-cleaning superhydrophobic coatings: Potential industrial applications[J]. Progress in Organic Coatings, 2019, 128: 52-58.
[15] FENG L, LI S, LI Y, et al. Super-Hydrophobic Surfaces: From Natural to Artificial[J]. Advanced Materials, 2002, 14 (24): 1 857-1 860.
[16] NEINHUIS C, BARTHLOTT W. Characterization and Distribution of Water-Repellent, Self-Cleaning Plant Surfaces[J]. Annals of Botany, 1997, 79(6): 667-677.
[17] BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1-8.
[18] MOHAMED A M A, ABDULLAH A M, YOUNAN N A. Corrosion behavior of superhydrophobic surfaces: A review[J]. Arabian Journal of Chemistry, 2015, 8(6): 749-765.
[19] LI C, ZHU M, OU J, et al. Dynamic corrosion behavior of superhydrophobic surfaces[J]. RSC Advances, 2018, 8 (51): 29 201-29 209.
[20] POETES R, HOLTZMANN K, FRANZE K, et al. Metastable Underwater Superhydrophobicity[J]. Physical Review Letters, 2010, 105(16): 166104.
[21] HUANG C,GUO Z. Fabrications and Applications of Slippery Liquid-infused Porous Surfaces Inspired from Nature: A Review[J]. Journal of Bionic Engineering, 2019, 16(5): 769-793.
[22] WONG T S, KANG S H, TANG S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 2011, 477 (7 365): 443-447.
[23] WANG G,GUO Z. Liquid infused surfaces with anti-icing properties[J]. Nanoscale, 2019, 11 (47): 22 615-22 635.
[24] LONG Y, YIN X, MU P, et al. Slippery liquid-infused porous surface (SLIPS) with superior liquid repellency, anti-corrosion, anti-icing and intensified durability for protecting substrates[J]. Chemical Engineering Journal, 2020, 401: 126137.
[25] WANG P, ZHANG D, LU Z. Slippery liquid-infused porous surface bio-inspired by pitcher plant for marine anti-biofouling application[J]. Colloids and Surfaces B: Biointerfaces, 2015, 136: 240-247.
[26] ZHANG M, YU J, CHEN R, et al. Highly transparent and robust slippery lubricant-infused porous surfaces with anti-icing and anti-fouling performances[J]. Journal of Alloys and Compounds, 2019, 803: 51-60.
[27] MA Q, WANG W, DONG G. Facile fabrication of biomimetic liquid-infused slippery surface on carbon steel and its self-cleaning, anti-corrosion, anti-frosting and tribological properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 577: 17-26.
[28] KIM P, WONG T S, ALVARENGA J, et al. Liquid-Infused Nanostructured Surfaces with Extreme Anti-Ice and Anti-Frost Performance[J]. ACS Nano, 2012, 6 (8): 6 569-6 577.
[29] DENG R, SHEN T, CHEN H, et al. Slippery liquid-infused porous surfaces (SLIPSs): a perfect solution to both marine fouling and corrosion?[J]. Journal of Materials Chemistry A, 2020, 8 (16): 7 536-7 547.
[30] XIANG T, ZHANG M, SADIG H R, et al. Slippery liquid-infused porous surface for corrosion protection with self-healing property[J]. Chemical Engineering Journal, 2018, 345: 147-155.
[31] LIANG Y, LI C, WANG P, et al. Fabrication of a robust slippery liquid infused porous surface on Q235 carbon steel for inhibiting microbiologically influenced corrosion[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 631: 127696.
[32] ZHU X, HE J, YAO Y, et al. A substrate-friendly, sepiolite-based porous surface infused with slippery liquid with outstanding liquid repellency and metal corrosion resistance[J]. Surface and Coatings Technology, 2022, 449: 128935.
[33] WANG C,GUO Z. A comparison between superhydrophobic surfaces (SHS) and slippery liquid-infused porous surfaces (SLIPS) in application[J]. Nanoscale, 2020, 12 (44): 22 398-22 424.
[34] ZHANG L, LIU G, GUO Y, et al. Bioinspired Functional Surfaces for Medical Devices[J]. Chinese Journal of Mechanical Engineering, 2022, 35(1): 43.
[35] SUBRAMANYAM S B, RYKACZEWSKI K, VARANASI K K. Ice Adhesion on Lubricant-Impregnated Textured Surfaces[J]. Langmuir, 2013, 29 (44): 13 414-13 418.
[36] HE W, LIU P, JIANG J, et al. Development of multifunctional liquid-infused materials by printing assisted functionalization on porous nanocomposites[J]. Journal of Materials Chemistry A, 2018, 6(9): 4 199-4 208.
[37] EPSTEIN A K, WONG T S, BELISLE R A, et al. Liquid-infused structured surfaces with exceptional anti-biofouling performance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109 (33): 13 182-13 187.
[38] KAJIYA T, WOOH S, LEE Y, et al. Cylindrical chains of water drops condensing on microstructured lubricant-infused surfaces[J]. Soft Matter, 2016, 12 (46): 9 377-9 382.
[39] GOU X, GUO Z. Reed leaf-inspired anisotropic slippery lubricant-infused surface for water collection and bubble transportation[J]. Chemical Engineering Journal, 2021, 411: 128495.
[40] YANG S, QIU R, SONG H, et al. Slippery liquid-infused porous surface based on perfluorinated lubricant/iron tetradecanoate: Preparation and corrosion protection application[J]. Applied Surface Science, 2015, 328: 491-500.
[41] ZHANG M, DONG M, CHEN S, et al. Slippery Liquid-infused Porous Surface Fabricated on Aluminum Maintains Stable Corrosion Resistance at Elevated Temperatures[J]. Engineered Science, 2018(3): 67-76.
[42] SABLOWSKI J, LINNEMANN J, HEMPEL S, et al. Electrodeposited metal-organic framework films as self-assembled hierarchically superstructured supports for stable omniphobic surface coatings[J]. Scientific Reports, 2018, 8(1): 15400.
[43] HUSSAIN M M, KUNWAR A, MAJEED M K, et al. Superhydrophobic Surface and Lubricant-Infused Surface: Implementing Two Extremes on Electrodeposited Ni-TiO2 Surface to Drive Optimal Wettability Regimes for Droplets’ Multifunctional Behaviors[J]. Advanced Engineering Materials, 2021, 23(10): 2100266.
[44] CHEN X, REN K, WANG J, et al. Infusing Lubricant onto Erasable Microstructured Surfaces toward Guided Sliding of Liquid Droplets[J]. ACS Applied Materials & Interfaces, 2017, 9(2): 1 959-1 967.
[45] HUANG W, CHEN X, HU M, et al. Patterned Slippery Surface through Dynamically Controlling Surface Structures for Droplet Microarray[J]. Chemistry of Materials, 2019, 31(3): 834-841.
[46] ZHU G H, CHO S H, ZHANG H, et al. Slippery Liquid-Infused Porous Surfaces (SLIPS) Using Layer-by-Layer Polyelectrolyte Assembly in Organic Solvent[J]. Langmuir, 2018, 34(16): 4 722-4 731.
[47] SUNNY S, CHENG G, DANIEL D, et al. Transparent antifouling material for improved operative field visibility in endoscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(42): 11 676-11 681.
[48] TSUGE Y, MORIYA T, MORIYAMA Y, et al. Slippery Liquid-Immobilized Coating Films Using in Situ Oxidation-Reduction Reactions of Metal Ions in Polyelectrolyte Films[J]. ACS Applied Materials & Interfaces, 2017, 9(17): 15 122-15 129.
[49] SUNNY S, VOGEL N, HOWELL C, et al. Lubricant-Infused Nanoparticulate Coatings Assembled by Layer-by-Layer Deposition[J]. Advanced Functional Materials, 2014, 24(42): 6 658-6 667.
[50] TUO Y, ZHANG H, CHEN W, et al. Corrosion protection application of slippery liquid-infused porous surface based on aluminum foil[J]. Applied Surface Science, 2017, 423: 365-374.
[51] WANG N, XIONG D, LU Y, et al. Design and Fabrication of the Lyophobic Slippery Surface and Its Application in Anti-Icing[J]. Journal of Physical Chemistry C, 2016, 120(20): 11 054-11 059.
[52] WANG Y, ZHANG H, LIU X, et al. Slippery liquid-infused substrates: a versatile preparation, unique anti-wetting and drag-reduction effect on water[J]. Journal of Materials Chemistry A, 2016, 4(7): 2 524-2 529.
[53] YUAN S, PENG J, ZHANG X, et al. A mechanically robust slippery surface with ‘corn-like’ structures fabricated by in-situ growth of TiO2 on attapulgite[J]. Chemical Engineering Journal, 2021, 415: 128953.
[54] HAO Z, CHEN C, SHEN T, et al. Slippery liquid-infused porous surface via thermally induced phase separation for enhanced corrosion protection[J]. Journal of Polymer Science, 2020, 58(21): 3 031-3 041.
[55] OKADA I,SHIRATORI S. High-Transparency, Self-Standable Gel-SLIPS Fabricated by a Facile Nanoscale Phase Separation[J]. ACS Applied Materials & Interfaces, 2014, 6 (3): 1 502-1 508.
[56] BROWN P S, BHUSHAN B. Liquid-impregnated porous polypropylene surfaces for liquid repellency[J]. Journal of Colloid and Interface Science, 2017, 487: 437-443.
[57] LIU Q, YANG Y, HUANG M, et al. Durability of a lubricant-infused Electrospray Silicon Rubber surface as an anti-icing coating[J]. Applied Surface Science, 2015, 346: 68-76.
[58] VICENTE A, RIVERO P J, GARCíA P, et al. Icephobic and Anticorrosion Coatings Deposited by Electrospinning on Aluminum Alloys for Aerospace Applications[J]. Polymers, 2021, 13(23): 4164.
[59] VAZIRINASAB E, JAFARI R, MOMEN G. Application of superhydrophobic coatings as a corrosion barrier: A review[J]. Surface and Coatings Technology, 2018, 341: 40-56.
[60] 佘欣未,蒋显全,谭小东,等. 中国铝产业的发展现状及展望[J]. 中国有色金属学报, 2020, 30(4): 709-718.
SHE X W, JIANG X Q, TAN X D, et al. Status and prospect for aluminum industrial development in China[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(4): 709-718.
[61] 洪海波,魏庆丰,杜 坤.铝点焊技术在汽车轻量化中的应用[J]. 汽车工艺师, 2022(8): 14-16.
HONG H B, WEI Q F, DU K. Application of Aluminum Spot Welding Technology in Automobile Lightweight[J]. Automotive Technologist, 2022(8): 14-16.
[62] 张 强. 铝、镁合金铸件在航天惯性器件上的应用:2019中国铸造活动周论文集[C]. 北京:中国机械工程学会铸造行业生产力促进中心,中国机械工程学会铸造分会,2019:446.
ZHANG Q. Application of aluminum and magnesium alloy castings in space inertial devices:2019 China Casting Week Proceedings[C]. Beijing: Chinese Mechanical Engineering Society, Foundry Industry Productivity Promotion Center, Foundry Branch of Chinese Mechanical Engineering Society, 2019: 446.
[63] TROMPETTE J L, ARURAULT L, FONTORBES S, et al. Influence of the anion specificity on the electrochemical corrosion of anodized aluminum substrates[J]. Electrochimica Acta, 2010, 55(8): 2 901-2 910.
[64] ABDULSTAAR M, MHAEDE M, WAGNER L, et al. Corrosion behaviour of Al 1050 severely deformed by rotary swaging[J]. Materials & Design, 2014, 57: 325-329.
[65] ZHANG M, SUN G, GUO H, et al. Effect of Morphology Evolution on the Anticorrosion Performance of Superhydrophobic Surfaces and Lubricant-Infused Surfaces[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(8): 3 170-3 180.
[66] WANG P, LU Z, ZHANG D. Slippery liquid-infused porous surfaces fabricated on aluminum as a barrier to corrosion induced by sulfate reducing bacteria[J]. Corrosion Science, 2015, 93: 159-166.
[67] WU D, ZHANG D, YE Y, et al. Durable lubricant-infused anodic aluminum oxide surfaces with high-aspect-ratio nanochannels[J]. Chemical Engineering Journal, 2019, 368: 138-147.
[68] LEE J, LEE M,CHOI C. Design of Robust Lubricant-Infused Surfaces for Anti-Corrosion[J]. ACS Applied Materials & Interfaces, 2022, 14 (1): 2 411-2 423.
[69] Núñez L, REGUERA E, CORVO F, et al. Corrosion of copper in seawater and its aerosols in a tropical island[J]. Corrosion Science, 2005, 47(2): 461-484.
[70] SHERIF E M,PARK S M. Effects of 2-amino-5-ethylthio-1,3,4-thiadiazole on copper corrosion as a corrosion inhibitor in aerated acidic pickling solutions[J]. Electrochimica Acta, 2006, 51(28): 6 556-6 562.
[71] WANG P, LIANG C, WU B, et al. Protection of copper corrosion by modification of dodecanethiol self-assembled monolayers prepared in aqueous micellar solution[J]. Electrochimica Acta, 2010, 55(3): 878-883.
[72] RYU M, CHOI H, YOON J, et al. Silica-nanoparticle reinforced lubricant-infused copper substrates with enhanced lubricant retention for maintenance-free heat exchangers[J]. Chemical Engineering Journal, 2023, 451: 138657.
[73] LI W,KANG Z. Fabrication of corrosion resistant superhydrophobic surface with self-cleaning property on magnesium alloy and its mechanical stability[J]. Surface and Coatings Technology, 2014, 253: 205-213.
[74] 于文韬. AZ31B镁合金表面羟基磷灰石基涂层材料的制备及其性能研究[D]. 青岛:青岛科技大学, 2020.
YU W T. Preparation and Properties of Hydroxyapatite-based Coating on the Surface of AZ31B Magesium Alloys[D]. Qingdao: Qingdao University of Science and Technology, 2020.
[75] GNEDENKOV S V, EGORKIN V S, SINEBRYUKHOV S L, et al. Formation and electrochemical properties of the superhydrophobic nanocomposite coating on PEO pretreated Mg-Mn-Ce magnesium alloy[J]. Surface and Coatings Technology, 2013, 232: 240-246.
[76] 钱志强. AZ31B镁合金超疏水表面的制备及性能研究[D]. 西宁:中国科学院大学(中国科学院青海盐湖研究所), 2018.
QIAN Z Q. Preparation and Characteristics of Superhydrophobic Surface on AZ31B Magnesium Alloy[D]. Xining: University of Chinese Academy of Sciences (Qinghai Institute of Salt Lakes, Chinese Academy of Sciences), 2018.
[77] 张 超. 超声辅助AZ31B镁合金微弧氧化关键技术研究[D]. 青岛:山东理工大学, 2019.
ZHANG C. Reseach on Key Technology of Ultrosound-assisted Micro Arc Oxidation of AZ31B Magnesium Alloy[D].Qingdao: Shandong University of Technology, 2019.
[78] LI H, FENG X, PENG Y, et al. Durable lubricant-infused coating on a magnesium alloy substrate with anti-biofouling and anti-corrosion properties and excellent thermally assisted healing ability[J]. Nanoscale, 2020, 12 (14): 7 700-7 711.
[79] FAN S. Water-repellent and corrosion-resistance properties of superhydrophobic and lubricant-infused super slippery surfaces[J]. RSC Advances, 2017, 7(70): 44 239-44 246.
[80] KAN Y, ZHENG F, LI B, et al. Self-healing dual biomimetic liquid-infused slippery surface in a partition matrix: Fabrication and anti-corrosion capability for magnesium alloy[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630: 127585.
[81] WANG X, LONG Y, MU P, et al. Silicone oil infused slippery candle soot surface for corrosion inhibition with anti-fouling and self-healing properties[J]. Journal of Adhesion Science and Technology, 2021, 35(10): 1 057-1 071.
[82] OHNO H, MATSUBAE K, NAKAJIMA K, et al. Unintentional Flow of Alloying Elements in Steel during Recycling of End-of-Life Vehicles[J]. Journal of Industrial Ecology, 2014, 18(2): 242-253.
[83] 万洁雯. 后疫情时代我囯钢材需求预测[D]. 南昌:江西财经大学, 2021.
WAN J W. Prediction of China’s Steel Demand in the late stage of COVID-19[D]. Nanchang:Jiangxi University of Finance and Economics, 2021.
[84] 王 冰, 赵凯月, 王文涛,等. 不锈钢在跨海桥梁工程防腐中的应用[J]. 混凝土, 2021(8): 141-145.
WANG B, ZHAO K Y, WANG W T, et al. Application of stainless steel rebar on corrosion resistance of sea-crossing bridges[J]. Concrete, 2021(8): 141-145.
[85] 刘振宝, 梁剑雄, 杨 哲,等. 高强度不锈钢应用及研究进展[J]. 中国冶金, 2022, 32(6): 42-53.
LIU Z B, LIANG J X, YANG Z, et al. Progress of application and reseach on high strength stainless steel[J].China Matellurgy, 2022, 32(6): 42-53.
[86] 关 鹤. 304不锈钢在FeCl3体系中的腐蚀行为研究[D]. 沈阳:沈阳大学, 2019.
GUAN H. The Study of Corrosion Behavior for 304 Stainless Steel in FeCl3 System[D]. Shenyang: Shenyang University, 2019.
[87] 唐鋆磊,颜 安,张海龙,等. 腐蚀防护对钢铁材料降低碳排放的重要影响:以钢质管道全生命周期碳排放计量研究为例[J].中国科学:技术科学,2023,53(1):53-70.
TANG J L, YAN A, ZHANG H L, et al. Importance of corrosion protection on steel materials in reducing carbon emissions: Carbon emission measurement throughout the life cycle of steel pipeline as an example[J]. Scientia Sinica Technologica,2023,53(1):53-70.
[88] ZHANG P, CHEN H, ZHANG L, et al. Anti-adhesion effects of liquid-infused textured surfaces on high-temperature stainless steel for soft tissue[J]. Applied Surface Science, 2016, 385: 249-256.
[89] ZHANG P, CHEN H, ZHANG L, et al. Stable slippery liquid-infused anti-wetting surface at high temperatures[J]. Journal of Materials Chemistry A, 2016, 4(31): 12 212-12 220.
[90] SUN H, LEI F, LI T, et al. Facile Fabrication of Novel Multifunctional Lubricant-Infused Surfaces with Exceptional Tribological and Anticorrosive Properties[J]. ACS Appl Mater Interfaces, 2021, 13(5): 6 678-6 687.
[91] PRADO L H, ANASTASIOU E,VIRTANEN S. Corrosion behavior of a slippery liquid infused porous surface on anodized stainless steel[J]. Materials Letters, 2021, 296: 129892.
[92] TESLER A B, PRADO L H, THIEVESSEN I, et al. Nontoxic Liquid-Infused Slippery Coating Prepared on Steel Substrates Inhibits Corrosion and Biofouling Adhesion[J]. ACS Applied Materials & Interfaces, 2022, 14 (25): 29 386-29 397.