Email Alert  RSS
超浸润涂层在材料保护中的应用专栏

润滑液体注入的多孔表面在金属防腐蚀的应用进展

  • 朱雪丹 ,
  • 姚亚丽 ,
  • 李杰辉 ,
  • 何金梅 ,
  • 屈孟男
展开
  • 西安科技大学化学与化工学院,陕西西安 710054
屈孟男,教授,博士生导师,研究方向为仿生功能材料,E-mail:mnanqu@gmail.com

收稿日期: 2022-12-26

  修回日期: 2023-01-25

  录用日期: 2023-02-14

  网络出版日期: 2023-07-14

基金资助

陕西高校青年创新团队资助项目(21JP068);陕西省科技厅资助项目(2019JM-371);西安科技大学胡杨学者计划资助;西安科技大学优秀青年科学基金(2019YQ2-09)资助

Application Progress of Slippery Liquid Infused Porous Surfaces in Metal Corrosion Protection

  • ZHU Xue-dan ,
  • YAO Ya-li ,
  • LI Jie-hui ,
  • HE Jin-mei ,
  • QU Meng-nan
Expand
  • College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China

Received date: 2022-12-26

  Revised date: 2023-01-25

  Accepted date: 2023-02-14

  Online published: 2023-07-14

摘要

以猪笼草为仿生原型的润滑液体注入的多孔表面(SLIPS)是将润滑剂注入具有低表面能的粗糙多孔结构形成的超光滑表面。由于SLIPS润滑层优良的阻隔效果而在金属防腐蚀领域有较好的应用前景。介绍了SLIPS的构建机理并从基材直接结构化处理、原位生长和涂层处理3方面对SLIPS在金属表面的制备方法进行了归纳;对SLIPS在铝、铜、镁、钢4种不同金属表面的防腐蚀应用进行了综述;指出了应用于金属防腐蚀的SLIPS材料存在的不足并对其发展趋势进行了展望。

本文引用格式

朱雪丹 , 姚亚丽 , 李杰辉 , 何金梅 , 屈孟男 . 润滑液体注入的多孔表面在金属防腐蚀的应用进展[J]. 材料保护, 2023 , 56(6) : 1 -13 . DOI: 10.16577/j.issn.1001-1560.2023.0128

Abstract

The slippery liquid infused porous surfaces (SLIPS) with employing pitcher plants as a biomimetic prototype are ultra-smooth surfaces formed by injecting lubricants into rough porous structures with low surface energy. Owing to the excellent barrier effect, the SLIPS lubricating layer has a good application prospect in the field of metal corrosion protection. In this work, the construction mechanism of SLIPS was introduced, and the preparation methods of SLIPS on metal surfaces were summarized from three aspects: direct substrate structuring, in-situ growth and coating treatment. The anti-corrosion applications of SLIPS on four different metal surfaces of aluminum, copper, magnesium and steel were reviewed. Furthermore, the shortcomings of SLIPS materials used in metal anti-corrosion were pointed out, and its development trend was prospected.

参考文献

[1] WANG D,BIERWAGEN G P. Sol-gel coatings on metals for corrosion protection[J]. Progress in Organic Coatings, 2009, 64 (4): 327-338.
[2] EJENSTAM L, OVASKAINEN L, RODRIGUEZ-MEIZOSO I, et al. The effect of superhydrophobic wetting state on corrosion protection - The AKD example[J]. Journal of Colloid and Interface Science, 2013, 412: 56-64.
[3] 侯保荣. 腐蚀成本与经济发展[J]. 中国科技产业, 2020(2): 21-22.
HOU B R. Corrosion cost and Economic Development[J]. China Science and Technology Industry, 2020(2): 21-22.
[4] 杨晓娜. Q235碳钢表面超疏水自修复防腐蚀涂层的制备及其性能研究[D]. 吉林:吉林大学, 2021.
YANG X N. Preparationg and properties of self-healing superhydrophobic coating on carbon steel Q235[D]. Jilin:Jilin University, 2021.
[5] MOMEN G, FARZANEH M. Facile approach in the development of icephobic hierarchically textured coatings as corrosion barrier[J]. Applied Surface Science, 2014, 299: 41-46.
[6] WANG P, ZHANG D, LU Z. Advantage of super-hydrophobic surface as a barrier against atmospheric corrosion induced by salt deliquescence[J]. Corrosion Science, 2015, 90: 23-32.
[7] JIANG Z, WANG X, JIA H, et al. Superhydrophobic Polytetrafluoroethylene/Heat-Shrinkable Polyvinyl Chloride Composite Film with Super Anti-Icing Property[J]. Polymers, 2019, 11(5): 805.
[8] WENG C, CHANG C, PENG C, et al. Advanced Anticorrosive Coatings Prepared from the Mimicked Xanthosoma Sagittifolium-leaf-like Electroactive Epoxy with Synergistic Effects of Superhydrophobicity and Redox Catalytic Capability[J]. Chemistry of Materials, 2011, 23(8): 2 075-2 083.
[9] CHAPMAN J, LE NOR L, BROWN R, et al. Antifouling performances of macro-to micro-to nano-copper materials for the inhibition of biofouling in its early stages[J]. Journal of Materials Chemistry B, 2013, 1(45): 6 194-6 200.
[10] BROWN R, RUSSELL S, MAY S, et al. Reproducible Superhydrophobic PVC Coatings; Investigating the Use of Plasticizers for Early Stage Biofouling Control[J]. Advanced Engineering Materials, 2017, 19 (7): 1700053.
[11] GHASEMI N, SEYFI J, ASADOLLAHZADEH M J. Imparting superhydrophobic and antibacterial properties onto the cotton fabrics: synergistic effect of zinc oxide nanoparticles and octadecanethiol[J]. Cellulose, 2018, 25(7): 4 211-4 222.
[12] SEYFI J, PANAHI-SARMAD M, ORAEIGHODOUSI A, et al. Antibacterial superhydrophobic polyvinyl chloride surfaces via the improved phase separation process using silver phosphate nanoparticles[J]. Colloids and Surfaces B: Biointerfaces, 2019, 183: 110438.
[13] LI H,YU S. A robust superhydrophobic surface and origins of its self-cleaning properties[J]. Applied Surface Science, 2017, 420: 336-345.
[14] LATTHE S S, SUTAR R S, KODAG V S, et al. Self-cleaning superhydrophobic coatings: Potential industrial applications[J]. Progress in Organic Coatings, 2019, 128: 52-58.
[15] FENG L, LI S, LI Y, et al. Super-Hydrophobic Surfaces: From Natural to Artificial[J]. Advanced Materials, 2002, 14 (24): 1 857-1 860.
[16] NEINHUIS C, BARTHLOTT W. Characterization and Distribution of Water-Repellent, Self-Cleaning Plant Surfaces[J]. Annals of Botany, 1997, 79(6): 667-677.
[17] BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1-8.
[18] MOHAMED A M A, ABDULLAH A M, YOUNAN N A. Corrosion behavior of superhydrophobic surfaces: A review[J]. Arabian Journal of Chemistry, 2015, 8(6): 749-765.
[19] LI C, ZHU M, OU J, et al. Dynamic corrosion behavior of superhydrophobic surfaces[J]. RSC Advances, 2018, 8 (51): 29 201-29 209.
[20] POETES R, HOLTZMANN K, FRANZE K, et al. Metastable Underwater Superhydrophobicity[J]. Physical Review Letters, 2010, 105(16): 166104.
[21] HUANG C,GUO Z. Fabrications and Applications of Slippery Liquid-infused Porous Surfaces Inspired from Nature: A Review[J]. Journal of Bionic Engineering, 2019, 16(5): 769-793.
[22] WONG T S, KANG S H, TANG S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 2011, 477 (7 365): 443-447.
[23] WANG G,GUO Z. Liquid infused surfaces with anti-icing properties[J]. Nanoscale, 2019, 11 (47): 22 615-22 635.
[24] LONG Y, YIN X, MU P, et al. Slippery liquid-infused porous surface (SLIPS) with superior liquid repellency, anti-corrosion, anti-icing and intensified durability for protecting substrates[J]. Chemical Engineering Journal, 2020, 401: 126137.
[25] WANG P, ZHANG D, LU Z. Slippery liquid-infused porous surface bio-inspired by pitcher plant for marine anti-biofouling application[J]. Colloids and Surfaces B: Biointerfaces, 2015, 136: 240-247.
[26] ZHANG M, YU J, CHEN R, et al. Highly transparent and robust slippery lubricant-infused porous surfaces with anti-icing and anti-fouling performances[J]. Journal of Alloys and Compounds, 2019, 803: 51-60.
[27] MA Q, WANG W, DONG G. Facile fabrication of biomimetic liquid-infused slippery surface on carbon steel and its self-cleaning, anti-corrosion, anti-frosting and tribological properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 577: 17-26.
[28] KIM P, WONG T S, ALVARENGA J, et al. Liquid-Infused Nanostructured Surfaces with Extreme Anti-Ice and Anti-Frost Performance[J]. ACS Nano, 2012, 6 (8): 6 569-6 577.
[29] DENG R, SHEN T, CHEN H, et al. Slippery liquid-infused porous surfaces (SLIPSs): a perfect solution to both marine fouling and corrosion?[J]. Journal of Materials Chemistry A, 2020, 8 (16): 7 536-7 547.
[30] XIANG T, ZHANG M, SADIG H R, et al. Slippery liquid-infused porous surface for corrosion protection with self-healing property[J]. Chemical Engineering Journal, 2018, 345: 147-155.
[31] LIANG Y, LI C, WANG P, et al. Fabrication of a robust slippery liquid infused porous surface on Q235 carbon steel for inhibiting microbiologically influenced corrosion[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 631: 127696.
[32] ZHU X, HE J, YAO Y, et al. A substrate-friendly, sepiolite-based porous surface infused with slippery liquid with outstanding liquid repellency and metal corrosion resistance[J]. Surface and Coatings Technology, 2022, 449: 128935.
[33] WANG C,GUO Z. A comparison between superhydrophobic surfaces (SHS) and slippery liquid-infused porous surfaces (SLIPS) in application[J]. Nanoscale, 2020, 12 (44): 22 398-22 424.
[34] ZHANG L, LIU G, GUO Y, et al. Bioinspired Functional Surfaces for Medical Devices[J]. Chinese Journal of Mechanical Engineering, 2022, 35(1): 43.
[35] SUBRAMANYAM S B, RYKACZEWSKI K, VARANASI K K. Ice Adhesion on Lubricant-Impregnated Textured Surfaces[J]. Langmuir, 2013, 29 (44): 13 414-13 418.
[36] HE W, LIU P, JIANG J, et al. Development of multifunctional liquid-infused materials by printing assisted functionalization on porous nanocomposites[J]. Journal of Materials Chemistry A, 2018, 6(9): 4 199-4 208.
[37] EPSTEIN A K, WONG T S, BELISLE R A, et al. Liquid-infused structured surfaces with exceptional anti-biofouling performance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109 (33): 13 182-13 187.
[38] KAJIYA T, WOOH S, LEE Y, et al. Cylindrical chains of water drops condensing on microstructured lubricant-infused surfaces[J]. Soft Matter, 2016, 12 (46): 9 377-9 382.
[39] GOU X, GUO Z. Reed leaf-inspired anisotropic slippery lubricant-infused surface for water collection and bubble transportation[J]. Chemical Engineering Journal, 2021, 411: 128495.
[40] YANG S, QIU R, SONG H, et al. Slippery liquid-infused porous surface based on perfluorinated lubricant/iron tetradecanoate: Preparation and corrosion protection application[J]. Applied Surface Science, 2015, 328: 491-500.
[41] ZHANG M, DONG M, CHEN S, et al. Slippery Liquid-infused Porous Surface Fabricated on Aluminum Maintains Stable Corrosion Resistance at Elevated Temperatures[J]. Engineered Science, 2018(3): 67-76.
[42] SABLOWSKI J, LINNEMANN J, HEMPEL S, et al. Electrodeposited metal-organic framework films as self-assembled hierarchically superstructured supports for stable omniphobic surface coatings[J]. Scientific Reports, 2018, 8(1): 15400.
[43] HUSSAIN M M, KUNWAR A, MAJEED M K, et al. Superhydrophobic Surface and Lubricant-Infused Surface: Implementing Two Extremes on Electrodeposited Ni-TiO2 Surface to Drive Optimal Wettability Regimes for Droplets’ Multifunctional Behaviors[J]. Advanced Engineering Materials, 2021, 23(10): 2100266.
[44] CHEN X, REN K, WANG J, et al. Infusing Lubricant onto Erasable Microstructured Surfaces toward Guided Sliding of Liquid Droplets[J]. ACS Applied Materials & Interfaces, 2017, 9(2): 1 959-1 967.
[45] HUANG W, CHEN X, HU M, et al. Patterned Slippery Surface through Dynamically Controlling Surface Structures for Droplet Microarray[J]. Chemistry of Materials, 2019, 31(3): 834-841.
[46] ZHU G H, CHO S H, ZHANG H, et al. Slippery Liquid-Infused Porous Surfaces (SLIPS) Using Layer-by-Layer Polyelectrolyte Assembly in Organic Solvent[J]. Langmuir, 2018, 34(16): 4 722-4 731.
[47] SUNNY S, CHENG G, DANIEL D, et al. Transparent antifouling material for improved operative field visibility in endoscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(42): 11 676-11 681.
[48] TSUGE Y, MORIYA T, MORIYAMA Y, et al. Slippery Liquid-Immobilized Coating Films Using in Situ Oxidation-Reduction Reactions of Metal Ions in Polyelectrolyte Films[J]. ACS Applied Materials & Interfaces, 2017, 9(17): 15 122-15 129.
[49] SUNNY S, VOGEL N, HOWELL C, et al. Lubricant-Infused Nanoparticulate Coatings Assembled by Layer-by-Layer Deposition[J]. Advanced Functional Materials, 2014, 24(42): 6 658-6 667.
[50] TUO Y, ZHANG H, CHEN W, et al. Corrosion protection application of slippery liquid-infused porous surface based on aluminum foil[J]. Applied Surface Science, 2017, 423: 365-374.
[51] WANG N, XIONG D, LU Y, et al. Design and Fabrication of the Lyophobic Slippery Surface and Its Application in Anti-Icing[J]. Journal of Physical Chemistry C, 2016, 120(20): 11 054-11 059.
[52] WANG Y, ZHANG H, LIU X, et al. Slippery liquid-infused substrates: a versatile preparation, unique anti-wetting and drag-reduction effect on water[J]. Journal of Materials Chemistry A, 2016, 4(7): 2 524-2 529.
[53] YUAN S, PENG J, ZHANG X, et al. A mechanically robust slippery surface with ‘corn-like’ structures fabricated by in-situ growth of TiO2 on attapulgite[J]. Chemical Engineering Journal, 2021, 415: 128953.
[54] HAO Z, CHEN C, SHEN T, et al. Slippery liquid-infused porous surface via thermally induced phase separation for enhanced corrosion protection[J]. Journal of Polymer Science, 2020, 58(21): 3 031-3 041.
[55] OKADA I,SHIRATORI S. High-Transparency, Self-Standable Gel-SLIPS Fabricated by a Facile Nanoscale Phase Separation[J]. ACS Applied Materials & Interfaces, 2014, 6 (3): 1 502-1 508.
[56] BROWN P S, BHUSHAN B. Liquid-impregnated porous polypropylene surfaces for liquid repellency[J]. Journal of Colloid and Interface Science, 2017, 487: 437-443.
[57] LIU Q, YANG Y, HUANG M, et al. Durability of a lubricant-infused Electrospray Silicon Rubber surface as an anti-icing coating[J]. Applied Surface Science, 2015, 346: 68-76.
[58] VICENTE A, RIVERO P J, GARCíA P, et al. Icephobic and Anticorrosion Coatings Deposited by Electrospinning on Aluminum Alloys for Aerospace Applications[J]. Polymers, 2021, 13(23): 4164.
[59] VAZIRINASAB E, JAFARI R, MOMEN G. Application of superhydrophobic coatings as a corrosion barrier: A review[J]. Surface and Coatings Technology, 2018, 341: 40-56.
[60] 佘欣未,蒋显全,谭小东,等. 中国铝产业的发展现状及展望[J]. 中国有色金属学报, 2020, 30(4): 709-718.
SHE X W, JIANG X Q, TAN X D, et al. Status and prospect for aluminum industrial development in China[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(4): 709-718.
[61] 洪海波,魏庆丰,杜 坤.铝点焊技术在汽车轻量化中的应用[J]. 汽车工艺师, 2022(8): 14-16.
HONG H B, WEI Q F, DU K. Application of Aluminum Spot Welding Technology in Automobile Lightweight[J]. Automotive Technologist, 2022(8): 14-16.
[62] 张 强. 铝、镁合金铸件在航天惯性器件上的应用:2019中国铸造活动周论文集[C]. 北京:中国机械工程学会铸造行业生产力促进中心,中国机械工程学会铸造分会,2019:446.
ZHANG Q. Application of aluminum and magnesium alloy castings in space inertial devices:2019 China Casting Week Proceedings[C]. Beijing: Chinese Mechanical Engineering Society, Foundry Industry Productivity Promotion Center, Foundry Branch of Chinese Mechanical Engineering Society, 2019: 446.
[63] TROMPETTE J L, ARURAULT L, FONTORBES S, et al. Influence of the anion specificity on the electrochemical corrosion of anodized aluminum substrates[J]. Electrochimica Acta, 2010, 55(8): 2 901-2 910.
[64] ABDULSTAAR M, MHAEDE M, WAGNER L, et al. Corrosion behaviour of Al 1050 severely deformed by rotary swaging[J]. Materials & Design, 2014, 57: 325-329.
[65] ZHANG M, SUN G, GUO H, et al. Effect of Morphology Evolution on the Anticorrosion Performance of Superhydrophobic Surfaces and Lubricant-Infused Surfaces[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(8): 3 170-3 180.
[66] WANG P, LU Z, ZHANG D. Slippery liquid-infused porous surfaces fabricated on aluminum as a barrier to corrosion induced by sulfate reducing bacteria[J]. Corrosion Science, 2015, 93: 159-166.
[67] WU D, ZHANG D, YE Y, et al. Durable lubricant-infused anodic aluminum oxide surfaces with high-aspect-ratio nanochannels[J]. Chemical Engineering Journal, 2019, 368: 138-147.
[68] LEE J, LEE M,CHOI C. Design of Robust Lubricant-Infused Surfaces for Anti-Corrosion[J]. ACS Applied Materials & Interfaces, 2022, 14 (1): 2 411-2 423.
[69] Núñez L, REGUERA E, CORVO F, et al. Corrosion of copper in seawater and its aerosols in a tropical island[J]. Corrosion Science, 2005, 47(2): 461-484.
[70] SHERIF E M,PARK S M. Effects of 2-amino-5-ethylthio-1,3,4-thiadiazole on copper corrosion as a corrosion inhibitor in aerated acidic pickling solutions[J]. Electrochimica Acta, 2006, 51(28): 6 556-6 562.
[71] WANG P, LIANG C, WU B, et al. Protection of copper corrosion by modification of dodecanethiol self-assembled monolayers prepared in aqueous micellar solution[J]. Electrochimica Acta, 2010, 55(3): 878-883.
[72] RYU M, CHOI H, YOON J, et al. Silica-nanoparticle reinforced lubricant-infused copper substrates with enhanced lubricant retention for maintenance-free heat exchangers[J]. Chemical Engineering Journal, 2023, 451: 138657.
[73] LI W,KANG Z. Fabrication of corrosion resistant superhydrophobic surface with self-cleaning property on magnesium alloy and its mechanical stability[J]. Surface and Coatings Technology, 2014, 253: 205-213.
[74] 于文韬. AZ31B镁合金表面羟基磷灰石基涂层材料的制备及其性能研究[D]. 青岛:青岛科技大学, 2020.
YU W T. Preparation and Properties of Hydroxyapatite-based Coating on the Surface of AZ31B Magesium Alloys[D]. Qingdao: Qingdao University of Science and Technology, 2020.
[75] GNEDENKOV S V, EGORKIN V S, SINEBRYUKHOV S L, et al. Formation and electrochemical properties of the superhydrophobic nanocomposite coating on PEO pretreated Mg-Mn-Ce magnesium alloy[J]. Surface and Coatings Technology, 2013, 232: 240-246.
[76] 钱志强. AZ31B镁合金超疏水表面的制备及性能研究[D]. 西宁:中国科学院大学(中国科学院青海盐湖研究所), 2018.
QIAN Z Q. Preparation and Characteristics of Superhydrophobic Surface on AZ31B Magnesium Alloy[D]. Xining: University of Chinese Academy of Sciences (Qinghai Institute of Salt Lakes, Chinese Academy of Sciences), 2018.
[77] 张 超. 超声辅助AZ31B镁合金微弧氧化关键技术研究[D]. 青岛:山东理工大学, 2019.
ZHANG C. Reseach on Key Technology of Ultrosound-assisted Micro Arc Oxidation of AZ31B Magnesium Alloy[D].Qingdao: Shandong University of Technology, 2019.
[78] LI H, FENG X, PENG Y, et al. Durable lubricant-infused coating on a magnesium alloy substrate with anti-biofouling and anti-corrosion properties and excellent thermally assisted healing ability[J]. Nanoscale, 2020, 12 (14): 7 700-7 711.
[79] FAN S. Water-repellent and corrosion-resistance properties of superhydrophobic and lubricant-infused super slippery surfaces[J]. RSC Advances, 2017, 7(70): 44 239-44 246.
[80] KAN Y, ZHENG F, LI B, et al. Self-healing dual biomimetic liquid-infused slippery surface in a partition matrix: Fabrication and anti-corrosion capability for magnesium alloy[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630: 127585.
[81] WANG X, LONG Y, MU P, et al. Silicone oil infused slippery candle soot surface for corrosion inhibition with anti-fouling and self-healing properties[J]. Journal of Adhesion Science and Technology, 2021, 35(10): 1 057-1 071.
[82] OHNO H, MATSUBAE K, NAKAJIMA K, et al. Unintentional Flow of Alloying Elements in Steel during Recycling of End-of-Life Vehicles[J]. Journal of Industrial Ecology, 2014, 18(2): 242-253.
[83] 万洁雯. 后疫情时代我囯钢材需求预测[D]. 南昌:江西财经大学, 2021.
WAN J W. Prediction of China’s Steel Demand in the late stage of COVID-19[D]. Nanchang:Jiangxi University of Finance and Economics, 2021.
[84] 王 冰, 赵凯月, 王文涛,等. 不锈钢在跨海桥梁工程防腐中的应用[J]. 混凝土, 2021(8): 141-145.
WANG B, ZHAO K Y, WANG W T, et al. Application of stainless steel rebar on corrosion resistance of sea-crossing bridges[J]. Concrete, 2021(8): 141-145.
[85] 刘振宝, 梁剑雄, 杨 哲,等. 高强度不锈钢应用及研究进展[J]. 中国冶金, 2022, 32(6): 42-53.
LIU Z B, LIANG J X, YANG Z, et al. Progress of application and reseach on high strength stainless steel[J].China Matellurgy, 2022, 32(6): 42-53.
[86] 关 鹤. 304不锈钢在FeCl3体系中的腐蚀行为研究[D]. 沈阳:沈阳大学, 2019.
GUAN H. The Study of Corrosion Behavior for 304 Stainless Steel in FeCl3 System[D]. Shenyang: Shenyang University, 2019.
[87] 唐鋆磊,颜 安,张海龙,等. 腐蚀防护对钢铁材料降低碳排放的重要影响:以钢质管道全生命周期碳排放计量研究为例[J].中国科学:技术科学,2023,53(1):53-70.
TANG J L, YAN A, ZHANG H L, et al. Importance of corrosion protection on steel materials in reducing carbon emissions: Carbon emission measurement throughout the life cycle of steel pipeline as an example[J]. Scientia Sinica Technologica,2023,53(1):53-70.
[88] ZHANG P, CHEN H, ZHANG L, et al. Anti-adhesion effects of liquid-infused textured surfaces on high-temperature stainless steel for soft tissue[J]. Applied Surface Science, 2016, 385: 249-256.
[89] ZHANG P, CHEN H, ZHANG L, et al. Stable slippery liquid-infused anti-wetting surface at high temperatures[J]. Journal of Materials Chemistry A, 2016, 4(31): 12 212-12 220.
[90] SUN H, LEI F, LI T, et al. Facile Fabrication of Novel Multifunctional Lubricant-Infused Surfaces with Exceptional Tribological and Anticorrosive Properties[J]. ACS Appl Mater Interfaces, 2021, 13(5): 6 678-6 687.
[91] PRADO L H, ANASTASIOU E,VIRTANEN S. Corrosion behavior of a slippery liquid infused porous surface on anodized stainless steel[J]. Materials Letters, 2021, 296: 129892.
[92] TESLER A B, PRADO L H, THIEVESSEN I, et al. Nontoxic Liquid-Infused Slippery Coating Prepared on Steel Substrates Inhibits Corrosion and Biofouling Adhesion[J]. ACS Applied Materials & Interfaces, 2022, 14 (25): 29 386-29 397.
文章导航

/