Email Alert  RSS
激光表面改性技术专栏

高速激光熔覆开采机刀盘的涂层显微组织及耐磨性能研究

展开
  • 1.中原工学院智能机电工程学院   2.浙江工业大学高端激光制造装备协同创新中心   3.武汉纺织大学数字化纺织装备湖北省重点实验室   4.河南理工大学机械与动力工程学院   5.河南机电职业学院河南省超硬材料智能制造装备集成重点实验室   6.林州重机集团股份有限公司   7.陕西小保当矿业有限公司
郭士锐(1986-),教授,硕士生导师,主要研究方向:激光表面改性,E-mail:laser@zut.edu.cn

收稿日期: 2024-12-25

  修回日期: 2025-02-09

  录用日期: 2025-02-10

  网络出版日期: 2025-06-10

基金资助

高端激光制造装备省部共建协同创新中心开放基金项目资助(JGKF-202501);河南省高校重点科研项目(24A460029;24A460008);武汉纺织大学数字纺织装备湖北省重点实验室开放课题(KDTL2023003);河南省重点研发与推广项目(242102220064;242102221033;242102231026);河南省超硬材料智能制造装备集成重点实验室开放课题(JDKJ2024-03);河南省研究生教育改革与质量提升工程项目(YJS2025XQLH24;YJS2025AL60);河南省重点研发专项(241111220100);河南省高校基础研究专项重点科研项目(24ZX004);2023 年高校重大重点项目培养计划项目(K2023ZDPY01)

Study on the Microstructure and Wear Resistance of the High-Speed Laser-Cladded Coating on the Cutterhead of Mining Machine

Expand
  • (1.School of Intelligent Mechatronics Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China;2.Collaborative Innovation Center of High-End Laser Manufacturing Equipment, Zhejiang University of Technology, Hangzhou 310014, China;3.Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, China;4.School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454000, China;5.Henan Key Laboratory of Intelligent Manufacturing Equipment Integration for Superhard Materials,Henan Mechanical & Electrical Vocational College, Zhengzhou 451192, China;6.Linzhou Heavy Machinery Group Co., Ltd., Anyang 456550, China; 7.Shaanxi Xiaobaodang Mining Co., Ltd., Yulin 719302, China)
GUO Shirui(1986-), Associate Professor, Master’s Supervisor, Research Focus: Laser Surface Modification,E-mail: laser@zut.edu.cn

Received date: 2024-12-25

  Revised date: 2025-02-09

  Accepted date: 2025-02-10

  Online published: 2025-06-10

Supported by

Open Foundation of the Collaborative Innovation Center of High-End Laser Manufacturing Equipment(JGKF-202501); Key Scientific Research Project of Colleges and Universities in Henan Province (24A460029; 24A460008); Open Project of Hubei Key Laboratory of Digital Textile Equipment (Wuhan Textile University) (KDTL2023003); Key Research and Development and Promotion Projects in Henan Province (242102220064; 242102221033; 242102231026); Open Project of Henan Key Laboratory of Intelligent Manufacturing Equipment Integration for Superhard Materials (JDKJ2024-03);Postgraduate Education Reform and Quality Improvement Project of Henan Province (YJS2025XQLH24;YJS2025AL60); Henan Province Key R&D Special Project(241111220100); Basic Research Special Project of Henan Province Higher Education Institutions Key Scientific Research Project Programme (24ZX004); 2023 University Major Key Project Achievement Cultivation Plan Project(K2023ZDPY01)

摘要

为了改善煤矿开采机刀盘的合金涂层组织,提高力学性能,采用2 种扫描速度(0.5 m/min 和12 m/min)在开采机刀盘表面制备Fe 基合金熔覆层(S1 和S2)。 通过扫描电镜(SEM)、维氏硬度计、X 射线衍射仪(XRD)对涂层金相显微组织、力学性能以及摩擦磨损性能进行分析。 结果表明:2 种涂层组织致密,无气孔和裂纹等缺陷,2 种激光熔覆涂层的顶部为等轴晶,涂层的中部为柱状晶,涂层底部为平面晶,S2 的整体组织形貌较为细小;熔覆层主要由α-Fe 固溶体、Cr2B 和FeNi 组成,S1 中有γ-Fe 相析出,S2 的α-Fe 相的衍射角度相对S1 向低角度偏移;2 种涂层的显微硬度均高于基体,S2 涂层的显微硬度最高,达到651 HV0.5;涂层的强化机制主要为细晶强化和固溶强化;S2 的摩擦磨损性能最好,基体的磨损率是S2 的7.3 倍,基体的磨损机理为黏着磨损,涂层的磨损机理主要为磨粒磨损。

本文引用格式

郭士锐, 丁首文, 崔陆军, 陈水生, 杜全斌, 郭钏, 薛晓强 . 高速激光熔覆开采机刀盘的涂层显微组织及耐磨性能研究[J]. 材料保护, 2025 , 58(5) : 105 -112 . DOI: 10.16577/j.issn.1001-1560.2025.0082

Abstract

To improve the microstructure of the alloy coating and enhance the mechanical properties of the cutter head in coal mining machines,Fe-based alloy cladding layers (S1 and S2) were fabricated on mining cutter head surfaces at two scanning speeds of 0.5 m/min and 12 m/min.The metallographic microstructure, mechanical properties and tribological performance of coatings were systematically characterized by scanning electron microscopy (SEM), Vickers hardness tester, and X-ray diffraction (XRD).Results showed both coatings exhibited dense microstructures without defects such as pores or cracks.The top layer of both laser-clad coatings consisted of equiaxed crystals, the middle layer was composed of columnar crystals, and the bottom layer consisted of planar crystals.Moreover, the overall microstructure of the S2 coating was finer than that of S1, and the overlay layers were primarily composed of an α-Fe solid solution, Cr2B and FeNi.The γ-Fe phase precipitated in S1, while the diffraction angle of the α-Fe phase in S2 shifted to a lower angle than that of S1.Both coatings had higher microhardness than the substrate,with the S2 coating showing the highest microhardness of 651 HV0.5.The strengthening mechanisms of the coating mainly included grain refinement strengthening and solid solution strengthening.Besides, S2 demonstrated the best tribological performance, and the wear rate of the substrate was 7.3 times that of S2.The wear mechanism of the substrate was adhesive wear, whereas that of the coatings was primarily abrasive wear.
文章导航

/