Email Alert  RSS
试验研究

氢气环境下2205双相不锈钢的氢致开裂研究

展开
  • 1.浙江省特种设备科学研究院,浙江 杭州 310020; 2.浙江省特种设备安全检测技术研究重点实验室,浙江 杭州 310020
陈兴阳(1990-),博士,高级工程师,主要从事承压设备的检验检测与安全评估研究,电话:13738035753,E-mail:chencxy@zjtj.org

收稿日期: 2022-09-27

  修回日期: 2022-10-15

  录用日期: 2022-11-26

  网络出版日期: 2023-03-15

Hydrogen-Induced Cracking of 2205 Duplex Stainless Steel in Hydrogen Environment

Expand
  • 1.Zhejiang Academy of Special Equipment Science,Hangzhou 310020,China; 2.Key Laboratory of Special Equipment Safety Testing Technology of Zhejiang Province,Hangzhou 310020,China

Received date: 2022-09-27

  Revised date: 2022-10-15

  Accepted date: 2022-11-26

  Online published: 2023-03-15

摘要

为了研究氢气环境下双相不锈钢疲劳裂纹萌生和扩展的影响规律,建立氢气环境下双相不锈钢疲劳应变组织演化—氢致开裂之间的关联机制,在5 MPa 氢气和5 MPa 氮气2 种环境中对2205 双相不锈钢试样进行了慢应变速率拉伸和疲劳裂纹扩展速率试验。结果表明:在氢气环境下,2205 双相不锈钢在慢应变速率拉伸过程中的氢脆敏感性不高,而在疲劳过程中氢脆现象显著,5 MPa 氢气环境下2205 双相不锈钢的疲劳裂纹扩展速率比氮气环境中的快18 倍;氢气能够促进2205 双向不锈钢疲劳裂纹尖端周围组织的局部塑性变形,并进一步导致氢致开裂。在氢气环境下2205 双相不锈钢疲劳变形过程中,不同的相结构其氢致开裂机理也不同,铁素体相容易形成河流状花样断口形貌(解理断口),而奥氏体相断口形貌多呈现平行的滑移带特征,奥氏体相在铁素体相的解理开裂过程中对裂纹具有阻碍作用。

本文引用格式

陈兴阳, 马琳琳, 赵峰霆, 王锋淮, 谢浩平 . 氢气环境下2205双相不锈钢的氢致开裂研究[J]. 材料保护, 2023 , 56(3) : 35 -40 . DOI: 10.16577/j.issn.1001-1560.2023.0057

Abstract

In order to study the influence of hydrogen environment on the initiation and propagation of fatigue cracks in duplex stainless steel and establish the correlation mechanism between the fatigue strain microstructure evolution and hydrogen induced cracking in hydrogen environment,slow strain rate tensile and fatigue crack growth rate tests were carried out on 2205 duplex stainless steel specimens in 5 MPa hydrogen and 5 MPa nitrogen environments.Results showed that the hydrogen embrittlement sensitivity of 2205 duplex stainless steel was not high in the process of slow strain rate tensile in hydrogen environment,while it was significant during the fatigue process.The fatigue crack growth rate of 2205 duplex stainless steel in a hydrogen environment of 5 MPa was 18 times higher than that in a nitrogen environment.Hydrogen could promote local plastic deformation around the fatigue crack tip of 2205 duplex stainless steel and further led to hydrogen-induced cracking.In the process of fatigue deformation of 2205 duplex stainless steel in a hydrogen environment,different phase structures had different hydrogen-induced cracking mechanisms.The ferrite phase was easy to form a river-like pattern fracture morphology (cleavage fracture),while the austenite phase fracture appearance mostly presented the characteristics of parallel slip bands.Austenite phase hindered cracks during the cleavage and cracking process of the ferrite phase.

参考文献

[1] 郑传波,唐祝君,申小兰.微观组织对2205 双相不锈钢氢脆敏感性的影响[J].金属热处理,2015(9):39-44.ZHENG C B,TANG Z J,SHEN X L.Effect of microstructure on hydrogen embrittlement of 2205 duplex stainless steel[J].Heat Treatment of Metals,2015(9):39-44.

[2] 何建宏,唐祥云,陈南平.铁素体-奥氏体双相不锈钢的氢致开裂研究[J].金属学报,1989(1):42-46.HE J H,TANG X Y,CHEN N P.Study on hydrogen -induced cracking of ferritic-austenitic duplex stainless steel[J].Acta Metallurgica Sinica,1989(1):42-46.

[3] 郑传波,唐祝君,申小兰.MoO42-对2205 双相不锈钢氢脆敏感性的影响[J].腐蚀科学与防护技术,2015,27(6):590-594.ZHENG C B,TANG Z J,SHEN X L.Effect of Molybdate Ion on Hydrogen Embrittlement of 2205 Duplex Stainless Steel[J].Corrosion Science and Protection Technology,2015,27(6):590-594.

[4] 向井喜彦,白士杰.双相不锈钢焊接接合部位氢脆型应力腐蚀裂纹机制的研究[J].长城技术,1993(A00):312-319.MUKAI Y,BAI S J.Study on the mechanism of hydrogen embrittlement stress corrosion cracking at the welded joint of duplex stainless steel[J].Changcheng Technology,1993(A00):312-319.

[5] CHAI G,RONNETEG S,ULF K,et al.Mechanisms of Hydrogen Induced Stress Crack Initiation and Propagation in Super Duplex Stainless Steels[J].Steel Research International,2009(80):482-487.

[6] LUU W C,LIU P W,WU J K.Hydrogen transport and degradation of a commercial duplex stainless steel[J].Corrosion Science,2002,44(8):1 783-1 791.

[7] ALVAREZ-ARMAS I,KRUPP U,BALBI M,et al.Growth of short cracks during low and high cycle fatigue in a duplex stainless steel[J].International Journal of Fatigue,2012,41:95-100.

[8] MURAKAMI Y,KANEZAKI T,MINE Y,et al.Hydrogen Embrittlement Mechanism in Fatigue of Austenitic Stainless Steels[J].Metallurgical & Materials Transactions A,2008,39A:1 327-1 339.

[9] NIBUR K A,SOMERDAY B P,BALCH D K,et al.The role of localized deformation in hydrogen - assisted crack propagation in 21Cr-6Ni-9Mn stainless steel[J].Acta Materialia,2009,57(13):3 795-3 809.

[10] CHEN X Y,MA L L,XIE H,et al.Effects of external hydrogen on hydrogen - assisted crack initiation in type 304 stainless steel[J].Anti-Corrosion Methods and Materials,2020,67(3):331-335.

[11] CHENX Y,MA L L,ZHOU C S,et al.Improved resistance to hydrogen environment embrittlement of warm -deformed 304 austenitic stainless steel in high-pressure hydrogen atmosphere[J].Corrosion Science,2019,148:159-170.

[12] CHEN X Y,ZHOU C S,ZHENG J Y,et al.Effects of α′martensite and deformation twin on hydrogen-assisted fatigue crack growth in cold/warm-rolled type 304 stainless steel[J].International Journal of Hydrogen Energy,2018,43(6): 3 342-3 352.

文章导航

/