Email Alert  RSS
工艺探讨

12Cr13马氏体不锈钢B/C化学热处理的研究

展开
  • 江苏大学材料科学与工程学院,江苏 镇江 212013
刘 凡(1997-),硕士,主要研究金属材料化学热处理方向,E-mail:fanliu0323@foxmail.com

收稿日期: 2022-09-15

  修回日期: 2022-10-05

  录用日期: 2022-11-07

  网络出版日期: 2023-03-15

Study on B/C Chemical Heat Treatment of 12Cr13 Martensitic Stainless Steel

Expand
  • School of Materials Science and Engineering,Jiangsu University,Zhenjiang 212013,China

Received date: 2022-09-15

  Revised date: 2022-10-05

  Accepted date: 2022-11-07

  Online published: 2023-03-15

摘要

研究了固体硼碳共渗及复合渗技术工艺参数对12Cr13 马氏体不锈钢的组织和性能的影响。共渗方面对12Cr13 钢进行不同硼碳比例的固体硼碳共渗热处理;复合渗方面对12Cr13 马氏体不锈钢先进行固体渗碳,然后再进行渗硼处理,得出最优的复合渗参数。对最优参数下的共渗及复合渗12Cr13 马氏体不锈钢试样进行显微硬度、XRD 物相结构、电化学下耐腐蚀和摩擦磨损性能检测分析。结果表明:共渗温度950 ℃、共渗6 h 条件下,硼碳共渗最优渗剂硼碳比为6 ∶4;化学渗6 h 条件下,硼碳复合渗最优参数为950 ℃渗碳,950 ℃渗硼;硼碳共渗和复合渗试件经过最终热处理(淬火+低温回火)后,表层组织硬度最高可达1 507.3 HV0.98 N,心部硬度为420.6 HV0.98 N,最优参数下硼碳共渗及复合渗渗层厚度分别为976 μm 和1 125 μm;电化学测试表明硼碳共渗和硼碳复合渗处理后材料的耐蚀性有所提高,共渗腐蚀电位为-0.578 V,复合渗为-0.582 V。磨损试验显示硼碳共渗和硼碳复合渗后经化学热处理可以显著提高12Cr13 马氏体不锈钢的耐磨性能。

本文引用格式

邵红红, 刘凡, 李承龙, 赵恩旭, 杨柳, 程晓农 . 12Cr13马氏体不锈钢B/C化学热处理的研究[J]. 材料保护, 2023 , 56(3) : 98 -105 . DOI: 10.16577/j.issn.1001-1560.2023.0065

Abstract

The effects of technological parameters of solid boroncarburizing and boron-carbon compound carburizing on the microstructure and properties of 12Cr13 martensitic stainless steel were studied.For the co-carburizing,12Cr13 steel was treated by solid borocarburizing heat treatment with different boron-carbon ratios;as for the boron-carbon compound carburizing,12Cr13 martensitic stainless steel was solid carburized first,then the boronizing treatment was carried out to get the optimal composite carburizing parameters.The microhardness,XRD phase structure,corrosion resistance under electrochemistry,friction and wear properties of 12Cr13 martensitic stainless steel samples under the optimum co-carburizing and compound carburizing parameters were tested and analyzed.Results showed that under the co-carburizing conditions of 950 ℃and 6 h,the optimum boron-carbon ratio of borocarburizing agent was 6:4;Under the condition of chemical compound carburizing for 6 h,the optimum parameters of boron-carbon compound carburizing were 950 ℃carburizing and 950 ℃boronizing.After the final heat treatment (quenching+low temperature tempering) of borocarburizing and compound carburizing test pieces,the hardness of the surface layer could reach 1 507.3 HV0.98 N, and the hardness of the core was 420.6 HV0.98 N.The thickness of the borocarburizing and compound carburizing layers under the optimum parameters was 976 μm and 1 125 μm,respectively.The electrochemical test showed that the corrosion resistance of the material was improved after borocarburizing and boron-carbon compound carburizing,and the corrosion potential was -0.578 V for borocarburizing and -0.582 V for boron-carbon compound carburizing.The wear test showed that the borocarburizing and boron-carbon compound carburizing could significantly improve the wear resistance of 12Cr13 martensitic stainless steel.

参考文献

[1] 戴起勋,程晓农.金属材料学[M].北京:化学工业出版社,2015.DAI Q X,CHENG X N.Metal Materials [M].Beijing:Chemical Industry Press,2015

[2] DALMAU A,RICHARD C,IGUAL-Muñoz A.Degradation mechanisms in martensitic stainless steels: Wear,corrosion and tribocorrosion appraisal [J].Tribology International,2018,121:167-179.

[3] 邵红红,纪嘉明.金属组织控制技术与设备[M].北京:北京大学出版社,2011.SHAO H H,JI J M.Metal tissue control technology and equipment[M].Beijing: Peking University Press,2011

[4] 刘同华,强文江,王 伟.不锈钢中合金元素的作用及其研究现状[J].热加工工艺,2018(4):17-21.LIU T H,QIANG W J,WANG W.Function and Research Status of Alloying Elements in Stainless Steel [J].Hot Working Process,2018(4): 17-21

[5] ISFAHANY A N,SAGHAFIAN H,BORHANI G.The effect of heat treatment on mechanical properties and corrosion behavior of AISI420 martensitic stainless steel[J].Journal of Alloys and Compounds,2011,509(9):3 931-3 936.

[6] 白 鹤,王伯健.马氏体不锈钢成分、工艺和耐蚀性的进展[J].特殊钢,2009,30(2):30-33.BAI H,WANG B J.Progress in Chemical Composition,Process and Corrosion Resistance of Martensite Stainless Steel [J].Special Steel,2009,30(2): 30-33

[7] 宗晓明,权超健,陈怀刚,等.9Cr18 马氏体不锈钢表面低温渗碳强化技术研究[J].热处理技术与装备,2017,38(3):29-32.ZONG X M,QUAN C J,CHEN H G,et al.Study on Low Temperature Surface Carburizing Technology of 9Cr18 Martensitic Stainless Steel [J].Heat Treatment Technology and Equipment,2017,38 (3): 29-32

[8] 王 浩,宗晓明.马氏体不锈钢表面强化技术研究[J].科技资讯,2017,15(17):94,96.WANG H,ZONG X M.Research on surface strengthening technology of martensitic stainless steel [J].Science and Technology Information,2017,15 (17): 94,96

[9] FRANDSEN R B,CHRISTIANSEN T,SOMERS M A J.Simultaneous surface engineering and bulk hardening of precipitation hardening stainless steel [J].Surface and Coatings Technology,2006,200(16/17): 5 160-5 169.

[10] 高 飞,宗晓明,权超健,等.低温渗碳处理对G95Cr18 马氏体不锈钢组织和性能的影响[J].轴承,2017(5):19-22.GAO F,ZONG X M,QUAN C J,et al.Effect of Low Temperature Carburizing on Microstructure and Properties of G95Cr18 Martensitic Stainless Steel [J].Bearing,2017(5): 19-22

[11] ROVANI A C,BREGANON R ,DE SOUZA G S,et al.Scratch resistance of low-temperature plasma nitrided and carburized martensitic stainless steel [J].Wear,2017,376-377:70-76.

[12] CASTELETTI L C,TAKEYA G S,MARIANI F E,et al.Effect of boronizing on precipitation hardened niobium stainless steel [J].Heat Treatment,2016,31 (4): 42-46

[13] DOKUMACI E,ÖZKAN I,ÖNAY B.Effect of Boronizing on the Cyclic Oxidation of Stainless Steel[J].Surface and Coatings Technology,2013,232:22-25.

[14] 吴晔康,杨海丽,徐 宏,等.熔盐电解法渗硼工艺的优化[J].电镀与精饰,2014,36(11):24-27.WU Y K,YANG H L,XU H,et al.Process Optimization of Boronizing by Molten Salt Electrolysis[J].Electroplating and Finishing,2014,36 (11): 24-27

[15] BINDAL C,UCISIK A H.Characterization of boriding of 0.3%C,0.02%P plain carbon steel[J].Vacuum,2008,82(1):90-94.

[16] 周子年,顾宗涛,王海青.不锈钢的镀铁渗硼[J].金属热处理,1986(5):35-39.ZHOU Z N,GU Z T,WANG H Q.Boronizatiom of ironplating stainless steel [J].Metal Heat Treatment,1986(5): 35-39.

文章导航

/