Email Alert  RSS
试验研究

Cu对低碳钢耐腐蚀和抑菌性能的影响

展开
  • 1.重庆科技学院冶金与材料工程学院,重庆 401331;2.上海恩太设备技术有限公司,上海 201800
栗克建(1988-),博士研究生,研究方向为先进钢铁材料,E-mail:likejiann@126.com

收稿日期: 2022-08-17

  修回日期: 2022-09-20

  录用日期: 2022-10-05

  网络出版日期: 2023-08-11

基金资助

重庆科技学院研究生科技创新项目(YKJCX2120220)资助

Effects of Cu Content on the Corrosion Resistance and Antibacterial Property of Low Carbon Steels

Expand
  • 1.School of Metallurgy and Material Engineering,Chongqing University of Science and Technology,Chongqing 401331,China;2.Shanghai Entai Equipment Technology Co.,Ltd.,Shanghai 201800,China

Received date: 2022-08-17

  Revised date: 2022-09-20

  Accepted date: 2022-10-05

  Online published: 2023-08-11

摘要

低碳钢不仅要求其具有较高的强度和硬度,而且耐腐蚀性和抑菌性也至关重要。为了研究不同Cu 含量的低碳钢在复杂工况环境下的耐腐蚀和抑菌性能,选取了4 种不同组织钢种:MS1500、S-Ten2、F92 和17-4PH。实验选择了酸性(pH=3)、中性(pH=7)、碱性(pH=11)和菌液(大肠杆菌和葡萄球菌)4 种溶液来模拟材料应用的复杂环境,采用动电位极化、电化学阻抗谱测试和浸泡实验对比分析了它们在4 种环境下的耐腐蚀性能,并在菌液环境中进行了材料抑菌实验。另外,通过对不同热处理后的S-Ten2 低碳钢进行抑菌实验,进一步研究了不同Cu析出状态对低碳钢抑菌性能的影响。实验结果表明:F92 和17-4PH 2 种低碳钢在4 种环境下均表现出了优异的耐蚀腐性能;在强碱环境下4 种材料的耐腐蚀性能相近。S-Ten2 在碱性环境下的耐腐蚀性能优于酸性和中性环境,而MS1500 的耐腐蚀性能在所有实验环境下相对稳定。在葡萄球菌液中,F92 和17-4PH 的耐蚀性能优于MS1500 和S-Ten2。通过对S-Ten2 不同热处理后,大肠杆菌液中900 ℃-6 h-水淬和560 ℃-6 h-空冷的样品抑菌性优于700 ℃-5 min-固溶的样品,说明合理的热处理可以使Cu 析出达到理想抑菌效果,但在葡萄球菌液中,3 种不同热处理的样品抑菌性均不理想。

本文引用格式

于硕硕, 徐正萌, 唐远寿, 司宇, 周新, 杨淏程, 栗克建, 马毅龙, 葛一波 . Cu对低碳钢耐腐蚀和抑菌性能的影响[J]. 材料保护, 2023 , 56(2) : 16 -23 . DOI: 10.16577/j.issn.1001-1560.2023.0030

Abstract

Low carbon steels require not only high strength and hardness,but also good corrosion resistance and antibacterial property.In order to study the corrosion resistance and antibacterial property of different low carbon steels with different Cu contents under complex working conditions,four steels with different microstructures were selected: MS1500,S-Ten2,F92 and 17-4PH.Acidic (pH=3),neutral (pH=7),alkaline (pH=11) and bacterial solutions (escherichia coli and staphylococcus) were selected to simulate the complex environment in which the materials were applied.Their corrosion resistances in these four environments were compared and analyzed by potentiodynamic polarization,electrochemical impedance spectroscopy test and immersion test.The bacteriostatic experiment of the materials was carried out in the bacteria solution environment.In addition,the effect of different Cu precipitation states on the bacteriostatic performance of low carbon steel was further studied through bacteriostatic experiments on S-Ten2 low carbon steels treated with different heat treatments.Results showed that F92 and 17-4PH low carbon steels exhibited excellent corrosion resistance in four environments.The corrosion resistances of the four materials were similar in strong alkali environment.The corrosion resistance of S-Ten2 in alkaline environment was better than that in acidic and neutral environments,and the corrosion resistance of MS1500 was relatively stable in all experimental environments.The corrosion resistances of F92 and 17-4PH were better than that of MS1500 and S-Ten2 in staphylococcal fluid.The antibacterial property of S-Ten2 samples with 900 ℃-6 h water quenching and 560 ℃-6 h air cooling was better than that with 700 ℃-5 min solid solution in escherichia coli solution,indicating that reasonable heat treatment could make the Cu precipitate achieve ideal bacteriostatic effects,but in staphylococcal solution,the bacteriostatic property of samples treated with three different heat treatments were not good.

参考文献

[1] 伊 璞,侯利锋,杜华云,等.新型奥氏体不锈钢高温NaCl 腐蚀行为研究[J].中国腐蚀与防护学报,2022,42(2):288-294.YI P,HOU L F,DU H Y,et al.NaCl Induced Corrosion of Three Austenitic Stainless Steels at High Temperature[J].Journal of Chinese Society for Corrosion and Protection,2022,42(2):288-294.

[2] 邱 萍,许守武,修林冉,等.304 不锈钢螺栓在模拟水下环境中的腐蚀行为研究[J].材料保护,2021,54(5):42-50.QIU P,XU S W,XIU L R,et al.Corrosion Behavior of 304 Stainless Steel Bolt in Simulated Underwater Environment[J].Materials Protection,2021,54(5):42-50.

[3] 牛寅竹,史艳华,杨众魁,等.X80 钢焊接结构海水腐蚀及温度的影响规律[J].腐蚀科学与防护技术,2019,31(5):495-500.NIU Y Z,SHI Y H,YANG Z K,et al.Effect of Temperature On Corrosion of Weld Structures for X80 Steel in Artificial Seawater[J].Corrosion Science and Protection Technology,2019,31(5):495-500.

[4] GOYAL A,POUYA H S,GANJIAN E,et al.A review of corrosion and protection of steel in concrete[J].Arabian Journal for Science and Engineering,2018,43 (10):5 035-5 055.

[5] UJIRO T,SATOH S,STAEHLE R W,et al.Effect of alloying Cu on the corrosion resistance of stainless steels in chloride media [J].Corrosion Science,2001,43(11):2 185-2 200.

[6] XI T,SHAHZAD M B,XU D,et al.Effect of copper addition on mechanical properties,corrosion resistance and antibacterial property of 316L stainless steel[J].Materials Science and Engineering: C,2017,71: 1 079-1 085.

[7] 尹 路,徐大可,杨春光.银、铜复合添加对2205 双相不锈钢耐硫酸盐还原菌腐蚀行为的影响[J].表面技术,2019,48(7): 316-323.YIN L,XU D K,YANG C G.Effect of Cu and Ag on Microbiologically Influenced Corrosion Resistance of 2205 Duplex Stainless Steel in Sulfate Reducing Bacteria[J].Surface Technology,2019,48(7): 316-323.

[8] 顾兴隆,朱四东,蔡琦琦.抗菌金属材料抗菌性能与检测方法评价[J].浙江万里学院学报,2018,31(5):88-91.GU X L,ZHU S D,CAI Q Q.Evaluation on detection methods and antibacterial property of antibacterial metallic materials [J].Journal of Zhejiang Wanli University,2018,31(5): 88-91.

[9] 李 杭,高建新,李运刚.载铜抗菌不锈钢的现状及发展[J].热加工工艺,2020,49(8): 21-25.LI H,GAO J X,LI Y G.Current situation and development of copper - loaded antibacterial stainless steel [J].Hot Working Technology,2020,49(8): 21-25.

[10] 董加胜,陈四红,吕曼祺.抗菌材料发展和现状[J].材料导报,2004(3): 41-43.DONG J S,CEHN S H,LV M Q.History and Current Status of Antibacterial Materials[J].Materials Reports,2004(3): 41-43.

[11] MA Z,LIU R,ZHAO Y,et al.Study on the antibacterial mechanism of Cu-bearing titanium alloy in the view of materials science [J].Materials Technology,2020,35(1):11-20.

[12] LIU L T,CHIN A W H,YU P,et al.Anti-pathogen stainless steel combating COVID-19 [J].Chemical Engineering Journal,2022,433: 133 783.

[13] 张志霞.含铜(氮)抗菌不锈钢的组织与性能研究[D].上海:上海交通大学,2007.ZHANG Z X.Study on microstructure and properties of antibacterial stainless steel containing Cu (N) [D].Shanghai:Shanghai Jiao Tong University,2007.

[14] 倪红卫,但智钢,许伯藩.AISI 304 不锈钢渗铜后的微观组织及抗菌性能[J].材料热处理学报,2005(5):42-45.NI H W,DAN Z G,XU B F.Microstructure and Antibacterial Property of AISI 304 Stainless Steel After Chemical Copperizing Treatment[J].Transactions of Materids and Heat Treatment,2005(5): 42-45.

[15] 孙一唐.金属与合金的化学热处理手册[M].上海:上海科技出版社,1986:350.SUN Y T.Manual for Chemical heat treatment of metals and alloys[M].Shanghai: Shanghai Science and Technology Press,1986:350.

[16] 纪祥娟,朱全心,刘 涛,等.抑菌圈直径测量中的显著性检验[J].计量与测试技术,2017,44(6):45-46.JI X J,ZHU Q X,LIU T,et al.Significance Test of the Inhibition Zone Diameter Measurement [J].Metrology &Measurement Technique,2017,44(6):45-46.

[17] 高秋英,贺 三,杨耀辉,等.Q245R 钢在高含Cl-塔河模拟油田水中的腐蚀行为研究[J].材料保护,2021,54(12):59-63.GAO Q Y,HE S,YANG Y H,et al.Study on corrosion behavior of Q245R steel in high Cl-Tahe simulated oilfield water[J].Materials Protection,2021,54(12):59-63.

[18] 王 琳,王晓霞,王 欣,等.冷喷涂铝/银纳米线复合涂层的海洋耐蚀防污性能研究[J].材料保护,2022,55(1):27-33.WANG L,WANG X X,WANG X,et al.Investigation on the Marine Corrosion Resistance and Antifouling Properties of Aluminum/Silver Nanowire Composite Coatings Fabricated via Cold Spraying[J].Materials Protection,2022,55(1):27-33.

[19] 程建国,刘 震,赵士光,等.17-4PH 不锈钢在不同浓度HCl 环境中的电化学腐蚀行为[J].材料保护,2021,54(10):29-35.CHENG J G,LIU Z,ZHAO S G,et al.Electrochemical Corrosion Behaviors of 17-4PH Stainless Steel in Different Concentrations of HCl Solutions[J].Materials Protection,2021,54(10):29-35.

[20] 王 帅,吴 新,张庆国.低温省煤器防腐换热管表面耐蚀性能[J].腐蚀科学与防护技术,2018,30(3):266-272.WANG S,WU X,ZHANG Q G,et al.Corrosion Resistance of Different Tube Coatings for Low-temperature Economizers[J].Corrosion Science and Protection Technology,2021,54(10):29-35.

[21] POTGIETER J H,OLUBAMBI P A,CORNISH L,et al.Influence of nickel additions on the corrosion behaviour of low nitrogen 22%Cr series duplex stainless steels [J].Corrosion Science,2008,50(9): 2 572-2 579.

[22] 赵吉鹏,王 军,刘天增,等.347H 不锈钢电化学腐蚀行为研究[J].兰州理工大学学报,2021,47(6):6-14.ZHAO J P,WANG J,LIU T Z,et al.Study on electrochemical corrosion of 347H stainless steel[J].Journal of Lanzhou University of Technology,2021,47(6):6-14.

[23] 常随成,韩 燕,史东峰,等.含Cr 钢腐蚀性能的研究现状及进展[J].辽宁化工,2014,43(4):455-459.CHANG S C,HAN Y,SHI D F,et al.Research Status and Progress on Corrosion of Cr-Containing Steel[J].Liaoning Chemical Industry,2014,43(4):455-459.

[24] 杨丽华,宋立欣,夏福松.连续油管腐蚀原因分析[J].化工设计通讯,2017,43(12):129.YANG L H,SONG L X,XIA F S,et al.Analysis of Corrosion Cause of Coiled Tubes[J].Chemical Engineering Design Communications,2017,43(12):129.

[25] 闫风洁,李辛庚,姜 波,等.纯铜在碱性土壤中的腐蚀行为[J].腐蚀科学与防护技术,2019,31(2):155-158.YAN F J,LI X G,JIANG B,et al.Corrosion Behavior of Pure Copper in Alkaline Soil[J].Corrosion Science and Protection Technology,2019,31(2):155-158.

[26] DINU M,MOUELE E S M,PARAU A C,et al.Enhancement of the corrosion resistance of 304 stainless steel by Cr-N and Cr (N,O) coatings [J].Coatings,2018,8(4):132.

[27] MOON J,HA H Y,PARK S J,et al.Effect of Mo and Cr additions on the microstructure,mechanical properties and pitting corrosion resistance of austenitic Fe-30Mn-10.5 Al-1.1 C lightweight steels[J].Journal of Alloys and Compounds,2019,775: 1 136-1 146.

文章导航

/