Email Alert  RSS
试验研究

L245 无缝钢管在4 MPa 氢气环境下的氢脆敏感性研究

展开
  • 1.中石化石油工程设计有限公司,山东 东营 257000;2.钢铁研究总院有限公司,北京 100081
杜培恩(1978-),硕士,高级工程师,主要研究方向为油气储运及新能源,电话:13589430543,E-mail:dupe.osec@sinopec.com

收稿日期: 2023-01-24

  修回日期: 2023-02-12

  录用日期: 2023-03-12

  网络出版日期: 2023-08-23

Study on Hydrogen Embrittlement Sensitivity of L245 Seamless Steel Pipe Under 4 MPa H2 Environment

Expand
  • 1.Sinopec Petroleum Engineering Corporation,Dongying 257000,China;2.Central Iron and Steel Research Institute,Beijing 100081,China

Received date: 2023-01-24

  Revised date: 2023-02-12

  Accepted date: 2023-03-12

  Online published: 2023-08-23

摘要

为了考察低钢级管线钢在中压氢气环境下的氢脆敏感性,采用光滑和缺口试样慢拉伸试验方法,结合宏观和微观断口表征与分析,研究了L245 钢在空气和4 MPa 氢气中的氢脆敏感性。结果表明:L245 钢光滑试样在4 MPa 氢气中慢拉伸的抗拉强度、断面收缩率和延伸率的损失率分别为5.2%、4.8%和-0.1%,而缺口试样在4 MPa 氢气中慢拉伸的抗拉强度、断面收缩率和拉伸位移的损失率分别达到19.1%、45.6%、15.4%,即发生了氢脆。L245 钢光滑试样在空气介质中的慢拉伸断裂方式为韧性断裂;开缺口后起裂源开始于缺口位置,然后以准解理断裂的方式向内部扩展,加速试样断裂过程,但整体仍然表现为韧性断裂。相比之下,当L245 钢光滑试样在4 MPa 氢气环境中时,会在颈缩位置产生裂纹源;开缺口后,从缺口位置向内部产生的准解理断裂区域显著增加,使得断裂过程急剧加快,而心部则发生了氢致韧断。开缺口后L245 钢在4 MPa 氢气中的断裂方式为准解理断裂与氢致韧断相结合。

本文引用格式

杜培恩, 宋卫臣, 刘 智, 付国强, 李 拔, 汪 兵, 刘清友 . L245 无缝钢管在4 MPa 氢气环境下的氢脆敏感性研究[J]. 材料保护, 2023 , 56(7) : 90 -97 . DOI: 10.16577/j.issn.1001-1560.2023.0166

Abstract

In order to investigate the hydrogen embrittlement sensitivity of the low-grade pipeline steel in medium-pressure hydrogen environment,the hydrogen embrittlement sensitivity of L245 steel in air environment and 4 MPa hydrogen environment was studied by smooth and notched slow tensile tests,combined with macroscopic and microscopic fracture characterization and analysis.Results showed that the loss rates of tensile strength,area reduction,and elongation of the L245 steel smooth samples under slow stretching in 4 MPa hydrogen were 5.2%,4.8%,and -0.1%,respectively.However,the loss rates of tensile strength,area reduction and tensile displacement of the notched samples under slow stretching in 4 MPa hydrogen were 19.1%,45.6%and 15.4%,respectively,indicating the occurrence of hydrogen embrittlement.The slow tensile fracture mode of the L245 steel smooth sample in air was ductile fracture.After the notch was opened,the crack source of the smooth samples started at a certain position of the notch and expanded inward in the way of quasi-cleavage fracture,accelerating the fracture process of the sample,but the overall fracture method was still ductile fracture.In contrast,the crack source generated at the necking position when the L245 steel smooth sample was exposed to 4 MPa hydrogen.After the notch was opened,a significant increase in the quasi-cleavage fracture area generated from the notch position towards the interior,which rapidly accelerated the fracture process,and the hydrogen-induced ductile fracture occurred in the center.The fracture mode of L245 steel after notch opening in 4 MPa hydrogen gas was a combination of quasicleavage fracture and hydrogen induced ductile fracture.

参考文献

[1] ZHAO W,ZHANG T,ZHAO Y,et al.Hydrogen permeation and embrittlement susceptibility of X80 welded joint under high-pressure coal gas environment[J].Corrosion Science,2016,111(10):84-97.

[2] 刘自亮,熊思江,郑津洋,等.氢气管道与天然气管道的对比分析[J].压力容器,2020,37(2):56-63.LIU Z L,XIONG S J,ZHENG J Y,et al.Comparative analysis of hydrogen pipeline and natural gas pipeline[J].Pressure Vessel Technology,2020,37(2):56-63.

[3] BRIOTTET L,BATISSE R,DE DINECHIN G,et al.Recommendations on X80 steel for the design of hydrogen gas transmission pipelines[J].International Journal of Hydrogen Energy,2012,37(11): 9 423-9 430.

[4] MENG B,GU C H,ZHANG L,et al.Hydrogen effects on X80 pipeline steel in high-pressure natural gas/hydrogen mixtures[J].International Journal of Hydrogen Energy,2017,42(11): 7 404-7 412.

[5] 赵德辉,徐庆虎,崔德春,等.管线钢在含氢气的煤制天然气中服役安全性评估[J].工程科学学报,2016,38(7):952-957.ZHAO D H,XU Q H,CUI D C,et al.Safety evaluation of pipeline steels under SNG containing H2[J].Chinese Journal of Engineering,2016,38(7):952-957.

[6] 张颖瑞,董超芳,李晓刚,等.电化学充氢条件下X70 管线钢及其焊缝的氢致开裂行为[J].金属学报,2006,42(5): 521-527.ZHANG Y R,DONG C F,LI X G,et al.Hydrogen induced cracking behaviors of X70 pipeline steel and its welds under electrochemical charging[J].Acta Metallurgica Sinica,2006,42(5):521-527.

[7] 史 昊,邢云颖,王修云.煤制气环境中氢含量对X80管线钢氢脆敏感性的影响规律[J].腐蚀与防护,2018,39(5):336-339.SHI H,XING Y Y,WANG X Y.Influence law of hydrogen content in coal gas system on hydrogen embrittlement sensitivity of X80 pipeline steel[J].Corrosion & Protection,2018,39(5):336-339.

[8] 张体明,王 勇,赵卫民,等.高压煤制气环境下X80 钢及热影响区的氢渗透参数研究[J].金属学报,2015,51(9): 1 101-1 110.ZHANG T M,WANG Y,ZHAO W M,et al.Hydrogen permeation parameters of X80 steel and welding HAZ under high pressure coal gas environment[J].Acta Metallurgica Sinica,2015,51(9):1 101-1 110.

[9] 杨 静,王晓霖,李遵照,等.氢气长距离管输技术现状与探讨[J].压力容器,2021,38(2):80-86.YANG J,WANG X L,LI Z Z,et al.Present status and discussion of long-distance pipeline hydrogen transportation technology[J].Pressure Vessel Technology,2021,38(2):80-86.

[10] 曹卜元,朱 明,李俊谊,等.模拟油气田采出水中乙酸和碳酸氢根含量对L245 钢腐蚀行为的影响[J].腐蚀与防护,2019,40(4):271-275.CAO P Y,ZHU M,LI J Y,et al.Effects of acetic acid and HCO3

- concentrations in simulated produced water of oil well on corrosion behavior of L245 steel[J].Corrosion &Protection,2019,40(4):271-275.

[11] 李俊谊,朱 明,曹卜元,等.L245 钢在不同温度饱和CO2的NaHCO3水溶液中的腐蚀行为[J].材料保护,2018,51(4):25-28.LI J Y,ZHU M,CAO B Y,et al.Corrosion behavior of L245 steel in CO2 saturated NaHCO3 aqueous solution at different temperatures[J].Materials Protection,2018,51(4):25-28.

[12] 朱 明,余 勇,张慧慧.L245 钢在不同温度下的油气田模拟水中的腐蚀行为研究[J].中国腐蚀与防护学报,2017,37(3):300-304.ZHU M,YU Y,ZHANG H H.Corrosion behavior of L245 steel in simulated oilfield produced water at different temperatures[J].Journal of Chinese Society for Corrosion and Protection,2017,37(3):300-304.

[13] 袁 曦,蒙 恬,石 磊,等.L245 钢在气田模拟水溶液中的氢渗透行为研究[J].石油与天然气化工,2016,45(2):55-57.YUAN X,MENG T,SHI L,et al.Hydrogen permeation of L245 pipeline steel in hydrogen sulfide-saturated aqueous solution of natural gas field[J].Chemical Engineering of Oil & Gas,2016,45(2):55-57.

[14] WANG S,NAGAO A,SOFRONIS P,et al.Hydrogen-modified dislocation structures in a cyclically deformed ferriticpearlitic low carbon steel[J].Acta Materialia,2018,144:164-176.

[15] MORO I,BRIOTTET L,LEMOINE P,et al.Hydrogen embrittlement susceptibility of a high strength steel X80[J].Materials Science and Engineering: A,2010,527(27/28):7 252-7 260.

[16] 关鸿鹏,林振娴,李瑜仙,等.X70 管线钢及焊缝在模拟煤制气含氢环境下的氢脆敏感性[J].工程科学学报,2017,39(4):535-541.GUAN H P,LIN Z X,LI Y X,et al.Hydrogen embrittlement susceptibility of the X70 pipeline steel substrate and weld in simulated coal gas containing hydrogen environment[J].Chinese Journal of Engineering,2017,39 (4):535-541.

[17] 白光乾,王秋岩,邓海全,等.氢环境下X52 管线钢的抗氢性能[J].材料导报,2020,34(11):22 130-22 135.BAI G Q,WANG Q Y,DENG H Q,et al.Hydrogen resistance of X52 pipeline steel under hydrogen environment[J].Materials Reports,2020,34(11):22 130-22 135.

[18] 金立果,邢云颖.X80 管线钢在含氢煤制气环境中的氢脆敏感性[J].腐蚀与防护,2017,38(5):361-364.JIN L G,XING Y Y.Susceptibility of X80 pipeline steel to hydrogen embrittlement in coal gas environment containing hydrogen[J].Corrosion & Protection,2017,38 (5):361-364.

[19] WANG G,YAN Y,LI J,et al.Microstructure effect on hydrogen induced cracking in TM210 maraging steel[J].Materials Science and Engineering A,2013,586 (12):142-148.

[20] KOYAMA M,ROHWERDER M,TASAN C C,et al.Recent progress in microstructural hydrogen mapping in steels:quantification,kinetic analysis,and multi-scale characterization[J].Journal of Materials Science & Technology,2017,33(13):81-96.

[21] 褚武扬,乔利杰,李金许,等.氢脆和应力腐蚀开裂[M].北京: 科学出版社,2013:243-250.CHU W Y,QIAO L J,LI J X,et al.Hydrogen embrittlement and stress corrosion cracking[M].Beijing: Science Press,2013:243-250.

[22] JIANG X G,CHU W Y,XIAO J M.Hydrogen induced void nucleation of 310 stainless steel[J].Acta Metallurgica et Materialia,1995,43(10): 3 727-3 732.
文章导航

/