Email Alert  RSS
工艺探讨

TiO2-PTFE对6063铝合金微弧氧化膜层的影响

  • 高虹 ,
  • 王超 ,
  • 姜波 ,
  • 宋仁国
展开
  • 常州大学 a.材料科学与工程学院,b.江苏省材料表面科学与技术重点实验室,江苏常州 213164
宋仁国(1965-),教授,博士生导师,博士,主要研究方向为材料腐蚀与防护、表面工程、计算材料科学等,电话:0519-86330095,E-mail: songrg@cczu.edu.cn

收稿日期: 2022-12-21

  修回日期: 2023-01-25

  录用日期: 2023-02-14

  网络出版日期: 2023-07-14

基金资助

国家自然科学基金资助项目(51871031)

Effect of TiO2-PTFE on Micro-Arc Oxidation Coating of 6063 Aluminum Alloy

  • GAO Hong ,
  • WANG Chao ,
  • JIANG Bo ,
  • SONG Ren-guo
Expand
  • a. School of Materials Science and Engineering, b. Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164, China

Received date: 2022-12-21

  Revised date: 2023-01-25

  Accepted date: 2023-02-14

  Online published: 2023-07-14

摘要

为了探究TiO2和聚四氟乙烯(PTFE)对6063铝合金微弧氧化膜层的影响,在Na2SiO3基础电解液中添加TiO2和PTFE固体纳米微粒,采用微弧氧化技术(MAO)在6063铝合金上制备了微弧氧化复合膜层。利用扫描电子显微镜(SEM)、X射线衍射(XRD)、摩擦磨损试验机以及电化学工作站研究了微弧氧化陶瓷膜层的形貌、相组成、元素分布以及耐磨性和耐蚀性。结果表明:加入4 g/L TiO2和10 mg/L PTFE制成复合添加剂制备的复合膜层其表面孔径尺寸明显降低,膜层厚度增加,结构致密;摩擦系数由0.9降到0.5,耐磨性最好;电化学试验测得复合膜层的自腐蚀电位最大,为-0.18 V;自腐蚀电流密度最小,为1.09×10-8 A/cm2

本文引用格式

高虹 , 王超 , 姜波 , 宋仁国 . TiO2-PTFE对6063铝合金微弧氧化膜层的影响[J]. 材料保护, 2023 , 56(6) : 128 -136 . DOI: 10.16577/j.issn.1001-1560.2023.0144

Abstract

In order to study the effect of TiO2 and PTFE on micro-arc oxidation coating of 6063 aluminum alloy, TiO2 and PTFE solid nanoparticles were added to the Na2SiO3 base electrolyte. The composite micro-arc oxidation coating was prepared on 6063 aluminum alloy by micro-arc oxidation (MAO) technology. The morphology, phase composition, element distribution, wear resistance and corrosion resistance of micro-arc oxidation ceramic coatings were studied by scanning electron microscope (SEM), X-ray diffraction (XRD), friction and wear tester and electrochemical workstation. Results indicated that the surface pore size of the composite coating prepared by adding 4 g/L TiO2 and 10 mg/L PTFE as composite additives was significantly reduced, thickness of the coating increased and the structure became dense. The friction coefficient decreased from 0.9 to 0.5, resulting in the best wear resistance. The electrochemical test showed that the self-corrosion potential of the composite coating was the highest (-0.18 V), and the self-corrosion current density was minimum (1.09 × 10-8 A/cm2).

参考文献

[1] XUE W B, WU X L, LI X J, et al. Anti-corrosion film on 2024/SiC aluminum matrix composite fabricated by microarc oxidation in silicate electrolyte[J]. Journal of Alloys and Compounds,2006,425(1):302-306.
[2] 庄俊杰, 宋仁国, 项 南, 等. 6063 铝合金微弧氧化膜层的腐蚀行为研究[J]. 腐蚀科学与防护技术, 2017, 29(5): 492-498.
ZHUANG J J, SONG R G, XIANG N, et al. Corrosion Behavior of Micro-arc Oxidation Coatings Formed on 6063 Aluminum Alloy[J]. Corrosion Science and Protection Technology, 2017, 29(5): 492-498.
[3] YIN J H, CAO Y Z. Research of Laser-induced Damage of Aluminum Alloy 5083 on Micro-arc Oxidation and Composite Coatings Treatment[J]. Optics Express, 2019, 27(13): 18 232-18 245.
[4] 宋仁国. 微弧氧化技术的发展及其应用[J].材料工程, 2019, 47(3):50-62.
SONG R G. Development and applications of micro-arc oxidation technology[J]. Journal of Materials Engineering, 2019, 47(3):50-62.
[5] 雷 欣,林乃明,邹娇娟,等.铝合金微弧氧化的研究进展[J].表面技术,2019,48(12):10-22.
LEI X, LIN N M, ZOU J J, et al. Research Progress of Micro-arc Oxidation on Aluminum Alloys[J]. Surface Technology,2019, 48(12): 10-22.
[6] 尚少伟,朱新河,马春生,等.铝合金微弧氧化/电泳复合涂层耐蚀减摩性能[J].大连海事大学学报,2022,48(1):113-119.
SHANG S W, ZHU X H, MA C S, et al. Corrosion resistance and antifriction properties of aluminum alloy micro-arc oxidation-electrophoretic composite coating[J]. Journal of Dalian Maritime University, 2022,48(1):113-119.
[7] ERARSLAN Y. Wear performance of in-situ aluminum matrix composite after micro-arc oxidation[J].Transactions of Nonferrous Metals Society of China, 2013, 23(2): 347-352.
[8] 付景国,刘 建,朱新河,等.微纳米颗粒在制备微弧氧化复合膜层中的影响研究现状[J].热加工工艺,2020,49(2):12-19.
FU J G, LIU J, ZHU X H, et al. Research Status of Influence of Micro-nano Particles in Preparation of Micro-arc Oxidation Composite Layer[J]. Hot Working Technology, 2020, 49(2): 12-19.
[9] 孙长飞,李更天,马春生.微弧氧化电源占空比对陶瓷基自润滑复合涂层性能的影响[J].润滑与密封, 2021,46(5):75-80.
SUN C F, LI G T, MA C S, et al. The Influence of Duty Cycle of Micro-arc Oxidation Power Supply on the Properties of Ceramic Matrix Self-lubricating Coatings[J]. Lubrication Engineering, 2021, 46(5): 75-80.
[10] 王红杰,杨晓禹,吴 瑜,等.纳米TiO2对TC4微弧氧化膜结构和性能的影响[J].兵器材料科学与工程,2022,45(3):61-65.
WANG H J, YANG X Y, WU Y, et al. Effect of nano-TiO2 on the structure and properties of TC4 micro arc oxidation coating[J]. Ordnance Material Science and Engineering, 2022,45(3):61-65.
[11] 樊 超,史海兰,宋志文,等.纳米TiO2对铝合金微弧氧化膜耐磨耐腐蚀性能的影响[J].材料保护,2020,53(11):70-76.
FAN C, SHI H L, SONG Z W, et al. Effect of Nano-TiO2 on the Wear and Corrosion Resistance of Micro-Arc Oxidation Coatings on Aluminum Alloy[J]. Materials Protection, 2020,53(11):70-76.
[12] DAROONPARVAR M, YAJID M A Z, YUSOF N M, et al. Preparation and corrosion resistance of a nano-composite plasma electrolytic oxidation coating on Mg 1%Ca alloy formed in aluminate electrolyte containing tanianano-additives[J]. Journal of Alloys and Compounds, 2016, 688(Part A):841-846.
[13] CHEN Y, LU X P, BLAWERT C, et al. Formation of self-lubricating PEO coating via in-situ incorporation of PTFE particles[J]. Surface and Coatings Technology,2018,337: 379-388.
[14] 卓子寒,王 超,姜 波,等. AZ80镁合金微弧氧化膜复合封孔工艺及其性能研究[J].材料保护,2022,55(6):106-112.
ZHUO Z H, WANG C, JIANG B, et al. Research on Composite Sealing Process and Performance of Micro-Arc Oxidation Film on AZ80 Magnesium Alloy[J]. Materials Protection, 2022,55(6):106-112.
[15] 赵 晖,杜春燕,杨金花,等.钛合金微弧氧化-聚四氟乙烯复合自润滑膜的制备及其性能[J].材料保护,2014,47(1):8-10.
ZHAO H, DU C Y, YANG J H, et al. Preparation of Micro-Arc Oxidation /Polytetrafluoroethylene Sealing Composite Self-Lubricating Film on Titanium Alloy and Evaluation of Wear Resistance and Corrosion Resistance of the Film[J]. Materials Protection, 2014,47(1):8-10.
[16] WANG Z W , WANG Y M , LIU Y, et al. Microstructure and infrared emissivity property of coating containing TiO2 formed on titanium alloy by microarc oxidation[J]. Current Applied Physics,2011,11(6):1 405-1 409.
[17] LI H X, SONG R G, JI Z G. Effects of nano-additive TiO2 on performance of micro-arc oxidation coatings formed on 6063 alumin[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(2): 406-411.
[18] XIANG N, SONG R G, WANG C, et al. Formation of corrosion resistant plasma electrolytic oxidation coatings on aluminum alloy with addition of sodium tungstate species[J]. Corrosion Engineering, Science and Technology, 2016,51(2):146-154.
[19] HUSSEIN R O, NORTHWOOD D O, NIE X. The effect of processing parameters and substrate composition on the corrosion resistance of plasma electrolytic oxidation (PEO) coated magnesium alloys[J]. Surface and Coatings Technology, 2013,237:357-368.
[20] LAO X S, ZHAO X F, LIU Y, et al. Study on friction characteristics of micro-arc oxidation modification layer of titanium alloy surface in seawater environment[J]. IOP Conference Series: Materials Science and Engineering, 2019, 631(2): 22-38.
[21] 胡汉军,周 晖,曹 珍,等.钛合金表面MAO/粘接PTFE涂层的真空摩擦学性能[J].摩擦学学报,2017,37(3):318-324.
HU H J, ZHOU H, CAO Z, et al. Tribological Properties of Duplex MAO/Bonded PTFE Coating on Top of Ti Alloy in Vacuμm[J]. Tribology, 2017,37(3):318-324.
[22] 任丽梅,高 珊,陈兆祥,等.自润滑微弧氧化复合膜层研究进展[J].燕山大学学报,2022,46(2):104-115.
REN L M, GAO S, CHEN Z X, et al. Research progress of self-lubricating micro-arc oxidation composite films[J]. Journal of Yanshan University, 2022,46(2):104-115.
[23] CHEN X W, HU J, ZHANG D F,et al. Study on corrosion resistance of TC4 titanium alloy micro‐arc oxidation/ (PTFE+graphite) composite coating[J]. International Journal of Applied Ceramic Technology,2021,19(1):397-408.
[24] WANG J H, DU M H, HAN F Z, et al. Effects of the ratio of anodic and cathodic currents on the characteristics of micro-arc oxidation ceramic coatings on Al alloys[J]. Applied Surface Science,2014,292:658-664.
文章导航

/