Email Alert  RSS
高熵合金涂层专栏

氧掺杂(VAlTiCrW)Ox高熵合金涂层的微观结构及摩擦学性能研究

展开
  • 中国科学院宁波材料技术与工程研究所,浙江 宁波 315000
蒲吉斌(1979-),博士,研究员,主要研究方向为新型功能防护涂层跨尺度结构设计及表界面行为研究,E-mail:pujibin@nimte.ac.cn

收稿日期: 2023-02-02

  修回日期: 2023-03-12

  录用日期: 2023-04-01

  网络出版日期: 2023-08-25

Study on Microstructure and Tribological Properties of Oxygen Doped (VAlTiCrW)Ox High-Entropy Alloy Coatings

Expand
  • Ningbo Institute of Materials Technology & Engineering,Ningbo 315000,China

Received date: 2023-02-02

  Revised date: 2023-03-12

  Accepted date: 2023-04-01

  Online published: 2023-08-25

摘要

非金属掺杂高熵合金在力学性能、耐磨性和耐腐蚀性等方面性能优异,而高温低摩擦仍存在较大提升空间,利用高熵合金特性使其有望应用在高温工作运动部件实现低摩擦。通过磁控溅射法在基底表面制备了不同氧掺杂量的(VAlTiCrW)Ox高熵合金涂层,采用扫描电子显微镜、原子力显微镜、X 射线衍射仪、高温摩擦试验机、表面轮廓仪、3D 光学轮廓仪以及拉曼光谱表征方法对涂层的微观结构和摩擦学性能进行了评价。结果显示:随着氧掺杂量的增加,涂层由BCC(体心立方)结构逐渐转变为无定性非晶结构,涂层硬度由3.3 GPa 上升至11.9 GPa,弹性模量由97.92 GPa 上升至181.70 GPa。涂层在700 ℃时的平均摩擦系数由0.49 下降至0.39,但磨损率由1.97×10-5mm3/(N·m)增加至6.41 × 10-4mm3/(N·m),低摩擦系数是由于掺氧涂层高温下更易形成具有润滑作用的V2O5,相应地由于V2O5的软化作用导致涂层的磨损率升高。

本文引用格式

刘雪松, 范 军, 蒲吉斌 . 氧掺杂(VAlTiCrW)Ox高熵合金涂层的微观结构及摩擦学性能研究[J]. 材料保护, 2023 , 56(8) : 28 -34 . DOI: 10.16577/j.issn.1001-1560.2023.0183

Abstract

Nonmetal doped high-entropy alloys have excellent mechanical properties,wear resistance and corrosion resistance,but there is still much room for improvement friction properties in high temperature.It is expected to achieve low friction through utilizing the characteristics of high-entropy alloys,when they are applied to high temperature working moving parts.In this work,(VAlTiCrW)Oxhigh-entropy alloy coatings with various oxygen content were prepared on the substrate surface by magnetron sputtering.The microstructure and tribological properties of the coating were evaluated by scanning electron microscope,atomic force microscope,X-ray diffractometer,high temperature friction testing machine,surface profiler,3D optical profiler and Raman spectroscopy.Results showed that with the increase of oxygen content,the coating structure gradually changed from BCC to indefinite amorphous structure,the hardness of the coating increased from 3.3 GPa to 11.9 GPa,and the elastic modulus increased from 97.92G Pa to 181.70 GPa.The average friction coefficient of the coating decreased from 0.49 to 0.39 at 700 ℃,but the wear rateincreased from 1.97× 10-5mm3/(N·m) to 6.41×10-4mm3/(N·m).Moreover,lowfriction coefficientresultedfrom the fact that oxygen doped coatings were more likely to form V2O5with lubricating effect at high temperatures,and correspondingly the wear rate of the coating increases due to the softening effect of V2O5.

参考文献

[1] WANG W,ZHENG S,PU J,et al.Microstructure,mechanical and tribological properties of Mo-V-N films by reactive magnetron sputtering[J].Surface and Coatings Technology,2020,387:125532.

[2] AOUADI S M,GAO H,MARTINI A,et al.Lubricious oxide coatings for extreme temperature applications: A review[J].Surface and Coatings Technology,2014,257:266-277.

[3] ZHU S,CHENG J,QIAO Z,et al.High temperature solidlubricating materials: A review[J].Tribology International,2018,133: 206-223.

[4] WAN S,TIEU A K,XIA Y,et al.An overview of inorganic polymer as potential lubricant additive for high temperature tribology[J].Tribology International,2016,102:620-635.

[5] MENG Y G,XU J,JIN Z M,et al.A review of recent advances in tribology[J].Friction,2020,8(2): 221-300.

[6] ZABINSKI J S,DONLEY M S,DYHOUSE V J,et al.Chemical and tribological characterization of PbO - MoS2films grown by pulsed laser deposition[J].Thin Solid Films,1992,214:156-163.

[7] XU Z,ZHANG Q,ZHAI W.Tribological properties of TiAl matrix self-lubricating composites incorporated with tungsten disulfide and zinc oxide[J].RSC Advances,2015,5(56):45 044-45 052.

[8] LIU E,BAI Y,GAO Y,et al.Tribological properties of NiAl-based composites containing Ag3VO4nanoparticles at elevated temperatures[J].Tribology International,2014,80:25-33.

[9] FENG X,LU C,JIA J,et al.High temperature tribological behaviors and wear mechanisms of NiAl-NbC-Ag composites formed by in-situ decomposition of AgNbO3[J].Tribology International,2019,141:105898.

[10] SI Y X,WANG G G,WEN M,et al.Corrosion and friction resistance of TiVCrZrWNxhigh entropy ceramics coatings prepared by magnetron sputtering[J].Ceramics International,2022,48: 9 342-9 352.

[11] BRAIC V,PARAU A C,PANA I,et al.Effects of substrate temperature and carbon content on the structure and properties of (CrCuNbTiY)C multicomponent coatings[J].Surface and Coatings Technology,2014,258:996-1 005.

[12] LEI Z F,LIU X J,WU Y,et al.Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes[J].Nature,2018,563:546-550.

[13] ERDEMIR A.A crystal chemical approach to the formulation of self-lubricating nanocomposite coatings[J].Surface and Coatings Technology,2005,200(5/6):1 792-1 796.

[14] DENG W,TANG L,ZHANG C,et al.Tribological behaviours of 8YSZ coating sliding against different counterparts[J].Surface Engineering,2020,37:111-119.

[15] ZHANG M,ZHANG L,FAN J,et al.Microstructure and enhanced mechanical behavior of the Al7Co24Cr21Fe24Ni24high-entropy alloy system by tuning the Cr content[J].Materials Science and Engineering: A,2018,733:299-306.

[16] CHEN R,CAI Z B,PU J B,et al.Effects of nitriding on the microstructure and properties of VAlTiCrMo high-entropy alloy coatings by sputtering technique[J].Journal of Alloys and Compounds,2020,827:153836.

[17] PSHYK A V,VASYLENKO A,BAKHIT B,et al.Highentropy transition metal nitride thin films alloyed with Al:Microstructure,phase composition and mechanical properties[J].Materials & Design,2022,219:110798.

[18] FIEANDT K,PILLOUD D,FRITZE S,et al.Optical and electrical properties of hard (Hf,Nb,Ti,V,Zr)Nxthin films[J].Vacuum,2021,193:110517.

[19] XU F D,GAO X F,LIU E L,et al.Microstructure and mechanical properties of lightweight (AlNbTiVCr)100-xCxhigh entropy alloys by carbide strengthening[J].Materials Letters,2022,325:132885.

[20] LEYLAND A,MATTHEWS A.On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour[J].Wear,2000,246: 1-11.
文章导航

/