Email Alert  RSS
超浸润涂层在材料保护中的应用专栏

浸润性材料用于含油废水处理的研究进展

  • 梁友乾 ,
  • 骆文佳 ,
  • 侯铎
展开
  • 西北矿冶研究院,甘肃白银 730900
梁友乾(1981-),大学本科,主要研究方向为化工机械产品的设计、工艺研究,电话:13909434653,E-mail:597640018@qq.com

收稿日期: 2022-12-27

  修回日期: 2023-01-25

  录用日期: 2023-02-16

  网络出版日期: 2023-07-14

Research Progress of Wettable Materials for Oil-Containing Wastewater Treatment

  • LIANG You-qian ,
  • LUO Wen-jia ,
  • HOU Duo
Expand
  • Northwest Research Institute of Mining and Metallurgy, Baiyin 730900, China

Received date: 2022-12-27

  Revised date: 2023-01-25

  Accepted date: 2023-02-16

  Online published: 2023-07-14

摘要

材料表面的浸润性对于分离混合物/乳液(如油与水或相反的水与油)极其重要。超浸润材料的发展已经显示出具有从油水乳液中回收水的巨大潜力,同时提供最大的抗污垢性能。在工业生产过程中,石油和天然气工业不断产生大量的废液,这些废液排放在水中导致水体污染,已经严重影响了人类社会的发展。因此,急需一种高效的技术来处理工业生产过程中产生的含油废水。在多种分离技术中,膜基分离技术已用于分离含油废水中的油水混合物/乳液。从亲水性、疏水性和超浸润性3个方面系统阐述了浸润性材料的性质及其在含油废水处理领域的相关应用;总结了浸润性改变在含油废水处理方面的不同作用;最后,指出了浸润性改性的重要性、面临的挑战和未来前景,以为浸润性改性的选择和设计提供必要的指导,并为含油废水处理的应用和发展提供支持。

本文引用格式

梁友乾 , 骆文佳 , 侯铎 . 浸润性材料用于含油废水处理的研究进展[J]. 材料保护, 2023 , 56(6) : 14 -21 . DOI: 10.16577/j.issn.1001-1560.2023.0129

Abstract

Wettability of the material surface is extremely important for the separation of mixtures/emulsions (e.g. oil and water or conversely water and oil). The development of superwetting materials has shown great potential for recovering water from oil-water emulsions and provide maximum anti-fouling properties. In industrial production process, the oil and natural gas industry continuously produces large amounts of wastewater, the wastewater is discharged in water and lead to water pollution, which has seriously affected the development of human society. Therefore, there is an urgent need for an efficient technology to treat the oily wastewater generated from industrial production processes. Among various separation technologies, membrane-based separation techniques have been used to separate oil-water mixtures/emulsions in oily wastewater. In this paper, the properties of wettable materials and their relevant applications in the field of oily wastewater treatment were systematically described in terms of hydrophilicity, hydrophobicity and superwettability. The different roles of wettability modification in the treatment of oily wastewater were summarized. Finally, the importance, challenges and future prospects of wettability modification were pointed out, which would provide necessary guidance for the selection and design of wettability modification, and provide support for the further applications and development in oily wastewater treatment.

参考文献

[1] 曾新娟, 王 丽, 皮丕辉, 等. 特殊润湿性油水分离材料的开发与研究[J]. 化学进展, 2018, 30(1): 73-86.
ZENG X J, WANG L, PI P H, et al. Development and research of special wettability oil-water separation materials[J]. Advances in Chemistry, 2018, 30(1): 73-86.
[2] DENG Y, LU T, CUI J, et al. Bio-based electrospun nanofiber as building blocks for a novel eco-friendly air filtration membrane: A review[J]. Separation and Purification Technology, 2021, 277: 119623.
[3] LU T, DENG Y, CUI J, et al. Multifunctional Applications of Blow-Spinning Setaria viridis Structured Fibrous Membranes in Water Purification[J]. ACS Appl Mater Interfaces, 2021, 13(19): 22 874-22 883.
[4] DING F, GAO M. Pore wettability for enhanced oil recovery, contaminant adsorption and oil/water separation: A review[J]. Adv Colloid Interface Sci, 2021, 289: 102377.
[5] SARBATLY R, KRISHNAIAH D, KAMIN Z. A review of polymer nanofibres by electrospinning and their application in oil-water separation for cleaning up marine oil spills[J]. Mar Pollut Bull, 2016, 106(1/2): 8-16.
[6] 董哲勤, 王宝娟, 许振良, 等. 油水分离功能膜制备技术研究进展[J]. 化工进展, 2017, 36(1): 1-9.
DONG Z Q, WANG B J, XU Z L, et al. Research progress of preparation technology of oil-water separation functional membrane[J]. Chemical Industry Progress, 2017, 36(1): 1-9.
[7] 袁 腾, 陈 卓, 周显宏, 等. 基于超亲水超疏油原理的网膜及其在油水分离中的应用[J]. 化工学报, 2014, 65(6): 1 943-1 951.
YUAN T, CHEN Z, ZHOU X H, et al. Omentum Based on superhydrophilic and superoleophobic Principle and its Application in oil-water separation[J]. Chinese Journal of Chemical Engineering, 2014, 65(6): 1 943-1 951.
[8] LAZGHAB M, SALEH K, PEZRON I, et al. Wettability assessment of finely divided solids[J]. Powder Technology, 2005, 157(1-3): 79-91.
[9] ZHANG N, QI Y, ZHANG Y, et al. A Review on Oil/Water Mixture Separation Material[J]. Industrial & Engineering Chemistry Research, 2020, 59(33): 14 546-14 568.
[10] KOBINA SAM E, KOBINA SAM D, LV X, et al. Recent development in the fabrication of self-healing superhydrophobic surfaces[J]. Chemical Engineering Journal, 2019, 373: 531-546.
[11] YONG J, CHEN F, YANG Q, et al. Photoinduced switchable underwater superoleophobicity-superoleophilicity on laser modified titanium surfaces[J]. Journal of Materials Chemistry A, 2015, 3(20): 10 703-10 709.
[12] MEHANNA Y A, SADLER E, UPTON R L, et al. The challenges, achievements and applications of submersible superhydrophobic materials[J]. Chem Soc Rev, 2021, 50(11): 65 69-6 612.
[13] DE OLIVEIRA T, BOUSSAFIR M, FOUGERE L, et al. Use of a clay mineral and its nonionic and cationic organoclay derivatives for the removal of pharmaceuticals from rural wastewater effluents[J]. Chemosphere, 2020, 259: 127480.
[14] MEKHZOUM M E M, RAJI M, RODRIGUE D, et al. The effect of benzothiazolium surfactant modified montmorillonite content on the properties of polyamide 6 nanocomposites[J]. Applied Clay Science, 2020, 185: 105417.
[15] SHI H, HE Y, PAN Y, et al. A modified mussel-inspired method to fabricate TiO2 decorated superhydrophilic PVDF membrane for oil/water separation[J]. Journal of Membrane Science, 2016, 506: 60-70.
[16] 杨振生, 李 亮, 张 磊,等. 疏水性油水分离膜及其过程研究进展[J]. 化工进展, 2014, 33(11): 3 082-3 089.
YANG Z S, LI L, ZHANG L, et al. Research progress of hydrophobic oil-water separation membranes and their processes[J]. Chemical Industry Progress, 2014, 33(11): 3 082-3 089.
[17] YU Y, CHEN H, LIU Y, et al. Selective separation of oil and water with mesh membranes by capillarity[J]. Adv Colloid Interface Sci, 2016, 235: 46-55.
[18] 党 钊, 刘利彬, 向 宇, 等. 超疏水-超亲油材料在油水分离中的研究进展[J]. 化工进展, 2016, 35(增刊1): 216-222.
DANG Z, LIU L B, XIANG Y, et al. Research progress of superhydrophobic and superhydrophilic materials in the separation of oil and water[J]. Chemical Industry Progress, 2016, 35(S1): 216-222.
[19] PENG Y, GUO Z. Recent advances in biomimetic thin membranes applied in emulsified oil/water separation[J]. Journal of Materials Chemistry A, 2016, 4(41): 15 749-15 770.
[20] ZHU H, GUO Z. Understanding the separations of oil/water mixtures from immiscible to emulsions on super-wettable surfaces[J]. Journal of Bionic Engineering, 2016, 13(1): 1-29.
[21] BAIG U, FAIZAN M, SAJID M. Semiconducting graphitic carbon nitride integrated membranes for sustainable production of clean water: A review[J]. Chemosphere, 2021, 282: 130898.
[22] JIANG X, YANG F, GUO Z. Superwetting surfaces for filtration separation of high-viscosity raw petroleum/water mixtures[J]. Journal of Materials Chemistry A, 2022, 10(27): 14 273-14 292.
[23] WOODS J, KUNG J, KINGSTON D, et al. Canadian Crudes: A Comparative Study of SARA Fractions from a Modified HPLC Separation Technique[J]. Oil & Gas Science and Technology - Revue de l'IFP, 2008, 63(1): 151-163.
[24] WANG S, LUAN H, LIANG X, et al. Recognition and characterization of active fractions from petroleum sulfonate[J]. Journal of Petroleum Science and Engineering, 2020, 187: 106797.
[25] CHEN C, WENG D, MAHMOOD A, et al. Separation Mechanism and Construction of Surfaces with Special Wettability for Oil/Water Separation[J]. ACS Appl Mater Interfaces, 2019, 11(11): 11 006-11 027.
[26] 江怀友, 李治平, 冯 彬, 等. 世界石油工业海底油气水分离技术现状与展望[J]. 特种油气藏, 2011, 18(3): 7-11.
JIANG H Y, LI Z P, FENG B, et al. Current situation and prospect of subsea oil, gas and water separation technology in the world petroleum industry[J]. Special Oil and Gas Reservoirs, 2011, 18(3): 7-11.
[27] WANG B, LIANG W, GUO Z, et al. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature[J]. Chem Soc Rev, 2015, 44(1): 336-361.
[28] 左继浩, 陈嘉慧, 文秀芳, 等. 用于分离油水乳液的先进材料[J]. 化学进展, 2019, 31(10): 1 440-1 458.
ZUO J H, CHEN J H, WEN X F, et al. Advanced Materials for separation of oil-water emulsion[J]. Advances in Chemistry, 2019, 31(10): 1 440-1 458.
[29] MA Q, CHENG H, FANE A G, et al. Recent Development of Advanced Materials with Special Wettability for Selective Oil/Water Separation[J]. Small, 2016, 12(16): 2 186-2 202.
[30] LI J, KANG R, TANG X, et al. Superhydrophobic meshes that can repel hot water and strong corrosive liquids used for efficient gravity-driven oil/water separation[J]. Nanoscale, 2016, 8(14): 7 638-7 645.
[31] UMAR A A, SAAID I B M, SULAIMON A A, et al. A review of petroleum emulsions and recent progress on water-in-crude oil emulsions stabilized by natural surfactants and solids[J]. Journal of Petroleum Science and Engineering, 2018, 165: 673-690.
[32] YONG J, YANG Q, GUO C, et al. A review of femtosecond laser-structured superhydrophobic or underwater superoleophobic porous surfaces/materials for efficient oil/water separation[J]. RSC Adv, 2019, 9(22): 12 470-12 495.
[33] MIKAMI Y, LIANG Y, MATSUOKA T, et al. Molecular Dynamics Simulations of Asphaltenes at the Oil-Water Interface: From Nanoaggregation to Thin-Film Formation[J]. Energy & Fuels, 2013, 27(4): 1 838-1 845.
[34] EL-SAMAK A A, PONNAMMA D, HASSAN M K, et al. Designing Flexible and Porous Fibrous Membranes for Oil Water Separation—A Review of Recent Developments[J]. Polymer Reviews, 2020, 60(4): 671-716.
[35] SU B, TIAN Y, JIANG L. Bioinspired Interfaces with Superwettability: From Materials to Chemistry[J]. J Am Chem Soc, 2016, 138(6): 1 727-1 748.
[36] ZARGHAMI S, MOHAMMADI T, SADRZADEH M, et al. Superhydrophilic and underwater superoleophobic membranes - A review of synthesis methods[J]. Progress in Polymer Science, 2019, 98: 101166.
[37] ISMAIL M F, ISLAM M A, KHORSHIDI B, et al. Surface characterization of thin-film composite membranes using contact angle technique: Review of quantification strategies and applications[J]. Adv Colloid Interface Sci, 2022, 299: 102524.
[38] BAIG U, FAIZAN M, WAHEED A. A review on super-wettable porous membranes and materials based on bio-polymeric chitosan for oil-water separation[J]. Adv Colloid Interface Sci, 2022, 303: 102635.
[39] DAI Z, ANSALONI L, GIN D L, et al. Facile fabrication of CO2 separation membranes by cross-linking of poly(ethylene glycol) diglycidyl ether with a diamine and a polyamine-based ionic liquid[J]. Journal of Membrane Science, 2017, 523: 551-560.
[40] GUPTA R K, DUNDERDALE G J, ENGLAND M W, et al. Oil/water separation techniques: a review of recent progresses and future directions[J]. Journal of Materials Chemistry A, 2017, 5(31): 16 025-16 058.
[41] LI L, XU Z, SUN W, et al. Bio-inspired membrane with adaptable wettability for smart oil/water separation[J]. Journal of Membrane Science, 2020, 598: 117661.
[42] SONG B. Simple and fast fabrication of superhydrophobic metal wire mesh for efficiently gravity-driven oil/water separation[J]. Mar Pollut Bull, 2016, 113(1/2): 211-215.
[43] PHANTHONG P, REUBROYCHAROEN P, KONGPARAKUL S, et al. Fabrication and evaluation of nanocellulose sponge for oil/water separation[J]. Carbohydr Polym, 2018, 190: 184-189.
[44] BAI X, ZHAO Z, YANG H, et al. ZnO nanoparticles coated mesh with switchable wettability for on-demand ultrafast separation of emulsified oil/water mixtures[J]. Separation and Purification Technology, 2019, 221: 294-302.
[45] DOSHI B, SILLANPAA M, KALLIOLA S. A review of bio-based materials for oil spill treatment[J]. Water Res, 2018, 135: 262-277.
[46] LI J, CHEN Y, GAO J, et al. Graphdiyne Sponge for Direct Collection of Oils from Water[J]. ACS Appl Mater Interfaces, 2019, 11(3): 2 591-2 598.
[47] XU Z, ZHAO Y, WANG H, et al.Fluorine-Free Superhydrophobic Coatings with pH-induced Wettability Transition for Controllable Oil-Water Separation[J]. ACS Appl Mater Interfaces, 2016, 8(8): 5 661-5 667.
[48] GAO H, LIU Y, WANG G, et al.Switchable Wettability Surface with Chemical Stability and Antifouling Properties for Controllable Oil-Water Separation[J]. Langmuir, 2019, 35(13): 4 498-4 508.
[49] YU Z P, ZHAN B, DONG L M, et al. Self-Healing Structured Graphene Surface with Reversible Wettability for Oil-Water Separation[J]. ACS Applied Nano Materials, 2019, 2(3): 1 505-1 515.
[50] OH S, KI S, RYU S, et al.Performance Analysis of Gravity-Driven Oil-Water Separation Using Membranes with Special Wettability[J]. Langmuir, 2019, 35(24): 7 769-7 782.
[51] BAIG U, FAIZAN M, SAJID M. Multifunctional membranes with super-wetting characteristics for oil-water separation and removal of hazardous environmental pollutants from water: A review[J]. Adv Colloid Interface Sci, 2020, 285: 102276.
[52] JU J, WANG T, WANG Q. Superhydrophilic and underwater superoleophobic PVDF membranes via plasma-induced surface PEGDA for effective separation of oil-in-water emulsions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 481: 151-157.
[53] YANG C, HAN N, WANG W, et al.Fabrication of a PPS Microporous Membrane for Efficient Water-in-Oil Emulsion Separation[J]. Langmuir, 2018, 34(36): 10 580-10 590.
[54] BAE J, KIM H, KIM K S, et al. Effect of asymmetric wettability in nanofiber membrane by electrospinning technique on separation of oil/water emulsion[J]. Chemosphere, 2018, 204: 235-242.
[55] YANG C, HAN N, HAN C, et al.Design of a Janus F-TiO2@PPS Porous Membrane with Asymmetric Wettability for Switchable Oil/Water Separation[J]. ACS Appl Mater Interfaces, 2019, 11(25): 22 408-22 418.
[56] ZHOU H, NIU H, WANG H, et al. A versatile, highly effective nanofibrous separation membrane[J]. Nanoscale, 2020, 12(4): 2 359-2 365.
[57] ZHANG C, LI P, CAO B. Electrospun Microfibrous Membranes Based on PIM-1/POSS with High Oil Wettability for Separation of Oil-Water Mixtures and Cleanup of Oil Soluble Contaminants[J]. Industrial & Engineering Chemistry Research, 2015, 54(35): 8 772-8 781.
[58] LI H, WANG X, HE Y, et al.Facile preparation of fluorine-free superhydrophobic/superoleophilic paper via layer-by-layer deposition for self-cleaning and oil/water separation[J]. Cellulose, 2018, 26(3): 2 055-2 074.
文章导航

/