[1] 曾新娟, 王 丽, 皮丕辉, 等. 特殊润湿性油水分离材料的开发与研究[J]. 化学进展, 2018, 30(1): 73-86.
ZENG X J, WANG L, PI P H, et al. Development and research of special wettability oil-water separation materials[J]. Advances in Chemistry, 2018, 30(1): 73-86.
[2] DENG Y, LU T, CUI J, et al. Bio-based electrospun nanofiber as building blocks for a novel eco-friendly air filtration membrane: A review[J]. Separation and Purification Technology, 2021, 277: 119623.
[3] LU T, DENG Y, CUI J, et al. Multifunctional Applications of Blow-Spinning Setaria viridis Structured Fibrous Membranes in Water Purification[J]. ACS Appl Mater Interfaces, 2021, 13(19): 22 874-22 883.
[4] DING F, GAO M. Pore wettability for enhanced oil recovery, contaminant adsorption and oil/water separation: A review[J]. Adv Colloid Interface Sci, 2021, 289: 102377.
[5] SARBATLY R, KRISHNAIAH D, KAMIN Z. A review of polymer nanofibres by electrospinning and their application in oil-water separation for cleaning up marine oil spills[J]. Mar Pollut Bull, 2016, 106(1/2): 8-16.
[6] 董哲勤, 王宝娟, 许振良, 等. 油水分离功能膜制备技术研究进展[J]. 化工进展, 2017, 36(1): 1-9.
DONG Z Q, WANG B J, XU Z L, et al. Research progress of preparation technology of oil-water separation functional membrane[J]. Chemical Industry Progress, 2017, 36(1): 1-9.
[7] 袁 腾, 陈 卓, 周显宏, 等. 基于超亲水超疏油原理的网膜及其在油水分离中的应用[J]. 化工学报, 2014, 65(6): 1 943-1 951.
YUAN T, CHEN Z, ZHOU X H, et al. Omentum Based on superhydrophilic and superoleophobic Principle and its Application in oil-water separation[J]. Chinese Journal of Chemical Engineering, 2014, 65(6): 1 943-1 951.
[8] LAZGHAB M, SALEH K, PEZRON I, et al. Wettability assessment of finely divided solids[J]. Powder Technology, 2005, 157(1-3): 79-91.
[9] ZHANG N, QI Y, ZHANG Y, et al. A Review on Oil/Water Mixture Separation Material[J]. Industrial & Engineering Chemistry Research, 2020, 59(33): 14 546-14 568.
[10] KOBINA SAM E, KOBINA SAM D, LV X, et al. Recent development in the fabrication of self-healing superhydrophobic surfaces[J]. Chemical Engineering Journal, 2019, 373: 531-546.
[11] YONG J, CHEN F, YANG Q, et al. Photoinduced switchable underwater superoleophobicity-superoleophilicity on laser modified titanium surfaces[J]. Journal of Materials Chemistry A, 2015, 3(20): 10 703-10 709.
[12] MEHANNA Y A, SADLER E, UPTON R L, et al. The challenges, achievements and applications of submersible superhydrophobic materials[J]. Chem Soc Rev, 2021, 50(11): 65 69-6 612.
[13] DE OLIVEIRA T, BOUSSAFIR M, FOUGERE L, et al. Use of a clay mineral and its nonionic and cationic organoclay derivatives for the removal of pharmaceuticals from rural wastewater effluents[J]. Chemosphere, 2020, 259: 127480.
[14] MEKHZOUM M E M, RAJI M, RODRIGUE D, et al. The effect of benzothiazolium surfactant modified montmorillonite content on the properties of polyamide 6 nanocomposites[J]. Applied Clay Science, 2020, 185: 105417.
[15] SHI H, HE Y, PAN Y, et al. A modified mussel-inspired method to fabricate TiO2 decorated superhydrophilic PVDF membrane for oil/water separation[J]. Journal of Membrane Science, 2016, 506: 60-70.
[16] 杨振生, 李 亮, 张 磊,等. 疏水性油水分离膜及其过程研究进展[J]. 化工进展, 2014, 33(11): 3 082-3 089.
YANG Z S, LI L, ZHANG L, et al. Research progress of hydrophobic oil-water separation membranes and their processes[J]. Chemical Industry Progress, 2014, 33(11): 3 082-3 089.
[17] YU Y, CHEN H, LIU Y, et al. Selective separation of oil and water with mesh membranes by capillarity[J]. Adv Colloid Interface Sci, 2016, 235: 46-55.
[18] 党 钊, 刘利彬, 向 宇, 等. 超疏水-超亲油材料在油水分离中的研究进展[J]. 化工进展, 2016, 35(增刊1): 216-222.
DANG Z, LIU L B, XIANG Y, et al. Research progress of superhydrophobic and superhydrophilic materials in the separation of oil and water[J]. Chemical Industry Progress, 2016, 35(S1): 216-222.
[19] PENG Y, GUO Z. Recent advances in biomimetic thin membranes applied in emulsified oil/water separation[J]. Journal of Materials Chemistry A, 2016, 4(41): 15 749-15 770.
[20] ZHU H, GUO Z. Understanding the separations of oil/water mixtures from immiscible to emulsions on super-wettable surfaces[J]. Journal of Bionic Engineering, 2016, 13(1): 1-29.
[21] BAIG U, FAIZAN M, SAJID M. Semiconducting graphitic carbon nitride integrated membranes for sustainable production of clean water: A review[J]. Chemosphere, 2021, 282: 130898.
[22] JIANG X, YANG F, GUO Z. Superwetting surfaces for filtration separation of high-viscosity raw petroleum/water mixtures[J]. Journal of Materials Chemistry A, 2022, 10(27): 14 273-14 292.
[23] WOODS J, KUNG J, KINGSTON D, et al. Canadian Crudes: A Comparative Study of SARA Fractions from a Modified HPLC Separation Technique[J]. Oil & Gas Science and Technology - Revue de l'IFP, 2008, 63(1): 151-163.
[24] WANG S, LUAN H, LIANG X, et al. Recognition and characterization of active fractions from petroleum sulfonate[J]. Journal of Petroleum Science and Engineering, 2020, 187: 106797.
[25] CHEN C, WENG D, MAHMOOD A, et al. Separation Mechanism and Construction of Surfaces with Special Wettability for Oil/Water Separation[J]. ACS Appl Mater Interfaces, 2019, 11(11): 11 006-11 027.
[26] 江怀友, 李治平, 冯 彬, 等. 世界石油工业海底油气水分离技术现状与展望[J]. 特种油气藏, 2011, 18(3): 7-11.
JIANG H Y, LI Z P, FENG B, et al. Current situation and prospect of subsea oil, gas and water separation technology in the world petroleum industry[J]. Special Oil and Gas Reservoirs, 2011, 18(3): 7-11.
[27] WANG B, LIANG W, GUO Z, et al. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature[J]. Chem Soc Rev, 2015, 44(1): 336-361.
[28] 左继浩, 陈嘉慧, 文秀芳, 等. 用于分离油水乳液的先进材料[J]. 化学进展, 2019, 31(10): 1 440-1 458.
ZUO J H, CHEN J H, WEN X F, et al. Advanced Materials for separation of oil-water emulsion[J]. Advances in Chemistry, 2019, 31(10): 1 440-1 458.
[29] MA Q, CHENG H, FANE A G, et al. Recent Development of Advanced Materials with Special Wettability for Selective Oil/Water Separation[J]. Small, 2016, 12(16): 2 186-2 202.
[30] LI J, KANG R, TANG X, et al. Superhydrophobic meshes that can repel hot water and strong corrosive liquids used for efficient gravity-driven oil/water separation[J]. Nanoscale, 2016, 8(14): 7 638-7 645.
[31] UMAR A A, SAAID I B M, SULAIMON A A, et al. A review of petroleum emulsions and recent progress on water-in-crude oil emulsions stabilized by natural surfactants and solids[J]. Journal of Petroleum Science and Engineering, 2018, 165: 673-690.
[32] YONG J, YANG Q, GUO C, et al. A review of femtosecond laser-structured superhydrophobic or underwater superoleophobic porous surfaces/materials for efficient oil/water separation[J]. RSC Adv, 2019, 9(22): 12 470-12 495.
[33] MIKAMI Y, LIANG Y, MATSUOKA T, et al. Molecular Dynamics Simulations of Asphaltenes at the Oil-Water Interface: From Nanoaggregation to Thin-Film Formation[J]. Energy & Fuels, 2013, 27(4): 1 838-1 845.
[34] EL-SAMAK A A, PONNAMMA D, HASSAN M K, et al. Designing Flexible and Porous Fibrous Membranes for Oil Water Separation—A Review of Recent Developments[J]. Polymer Reviews, 2020, 60(4): 671-716.
[35] SU B, TIAN Y, JIANG L. Bioinspired Interfaces with Superwettability: From Materials to Chemistry[J]. J Am Chem Soc, 2016, 138(6): 1 727-1 748.
[36] ZARGHAMI S, MOHAMMADI T, SADRZADEH M, et al. Superhydrophilic and underwater superoleophobic membranes - A review of synthesis methods[J]. Progress in Polymer Science, 2019, 98: 101166.
[37] ISMAIL M F, ISLAM M A, KHORSHIDI B, et al. Surface characterization of thin-film composite membranes using contact angle technique: Review of quantification strategies and applications[J]. Adv Colloid Interface Sci, 2022, 299: 102524.
[38] BAIG U, FAIZAN M, WAHEED A. A review on super-wettable porous membranes and materials based on bio-polymeric chitosan for oil-water separation[J]. Adv Colloid Interface Sci, 2022, 303: 102635.
[39] DAI Z, ANSALONI L, GIN D L, et al. Facile fabrication of CO2 separation membranes by cross-linking of poly(ethylene glycol) diglycidyl ether with a diamine and a polyamine-based ionic liquid[J]. Journal of Membrane Science, 2017, 523: 551-560.
[40] GUPTA R K, DUNDERDALE G J, ENGLAND M W, et al. Oil/water separation techniques: a review of recent progresses and future directions[J]. Journal of Materials Chemistry A, 2017, 5(31): 16 025-16 058.
[41] LI L, XU Z, SUN W, et al. Bio-inspired membrane with adaptable wettability for smart oil/water separation[J]. Journal of Membrane Science, 2020, 598: 117661.
[42] SONG B. Simple and fast fabrication of superhydrophobic metal wire mesh for efficiently gravity-driven oil/water separation[J]. Mar Pollut Bull, 2016, 113(1/2): 211-215.
[43] PHANTHONG P, REUBROYCHAROEN P, KONGPARAKUL S, et al. Fabrication and evaluation of nanocellulose sponge for oil/water separation[J]. Carbohydr Polym, 2018, 190: 184-189.
[44] BAI X, ZHAO Z, YANG H, et al. ZnO nanoparticles coated mesh with switchable wettability for on-demand ultrafast separation of emulsified oil/water mixtures[J]. Separation and Purification Technology, 2019, 221: 294-302.
[45] DOSHI B, SILLANPAA M, KALLIOLA S. A review of bio-based materials for oil spill treatment[J]. Water Res, 2018, 135: 262-277.
[46] LI J, CHEN Y, GAO J, et al. Graphdiyne Sponge for Direct Collection of Oils from Water[J]. ACS Appl Mater Interfaces, 2019, 11(3): 2 591-2 598.
[47] XU Z, ZHAO Y, WANG H, et al.Fluorine-Free Superhydrophobic Coatings with pH-induced Wettability Transition for Controllable Oil-Water Separation[J]. ACS Appl Mater Interfaces, 2016, 8(8): 5 661-5 667.
[48] GAO H, LIU Y, WANG G, et al.Switchable Wettability Surface with Chemical Stability and Antifouling Properties for Controllable Oil-Water Separation[J]. Langmuir, 2019, 35(13): 4 498-4 508.
[49] YU Z P, ZHAN B, DONG L M, et al. Self-Healing Structured Graphene Surface with Reversible Wettability for Oil-Water Separation[J]. ACS Applied Nano Materials, 2019, 2(3): 1 505-1 515.
[50] OH S, KI S, RYU S, et al.Performance Analysis of Gravity-Driven Oil-Water Separation Using Membranes with Special Wettability[J]. Langmuir, 2019, 35(24): 7 769-7 782.
[51] BAIG U, FAIZAN M, SAJID M. Multifunctional membranes with super-wetting characteristics for oil-water separation and removal of hazardous environmental pollutants from water: A review[J]. Adv Colloid Interface Sci, 2020, 285: 102276.
[52] JU J, WANG T, WANG Q. Superhydrophilic and underwater superoleophobic PVDF membranes via plasma-induced surface PEGDA for effective separation of oil-in-water emulsions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 481: 151-157.
[53] YANG C, HAN N, WANG W, et al.Fabrication of a PPS Microporous Membrane for Efficient Water-in-Oil Emulsion Separation[J]. Langmuir, 2018, 34(36): 10 580-10 590.
[54] BAE J, KIM H, KIM K S, et al. Effect of asymmetric wettability in nanofiber membrane by electrospinning technique on separation of oil/water emulsion[J]. Chemosphere, 2018, 204: 235-242.
[55] YANG C, HAN N, HAN C, et al.Design of a Janus F-TiO2@PPS Porous Membrane with Asymmetric Wettability for Switchable Oil/Water Separation[J]. ACS Appl Mater Interfaces, 2019, 11(25): 22 408-22 418.
[56] ZHOU H, NIU H, WANG H, et al. A versatile, highly effective nanofibrous separation membrane[J]. Nanoscale, 2020, 12(4): 2 359-2 365.
[57] ZHANG C, LI P, CAO B. Electrospun Microfibrous Membranes Based on PIM-1/POSS with High Oil Wettability for Separation of Oil-Water Mixtures and Cleanup of Oil Soluble Contaminants[J]. Industrial & Engineering Chemistry Research, 2015, 54(35): 8 772-8 781.
[58] LI H, WANG X, HE Y, et al.Facile preparation of fluorine-free superhydrophobic/superoleophilic paper via layer-by-layer deposition for self-cleaning and oil/water separation[J]. Cellulose, 2018, 26(3): 2 055-2 074.