Email Alert  RSS
综述

微区电化学测量技术在金属电偶腐蚀中的应用

  • 王通 ,
  • 李长光 ,
  • 李兆斌
展开
  • 北京遥感设备研究所,北京 100854
李长光(1992-),硕士,工程师,主要从事航空航天结构材料可靠性研究,E-mail:hitcgl@126.com

收稿日期: 2023-01-25

  修回日期: 2023-02-15

  录用日期: 2023-03-14

  网络出版日期: 2023-07-14

Application of Micro-Area Electrochemical Measurement Technique in Metal Galvanic Corrosion

  • WANG Tong ,
  • LI Chang-guang ,
  • LI Zhao-bin
Expand
  • Beijing Institute of Remote Sensing Equipment, Beijing 100854, China

Received date: 2023-01-25

  Revised date: 2023-02-15

  Accepted date: 2023-03-14

  Online published: 2023-07-14

摘要

微区电化学测量技术可在微米级甚至亚微米级尺度对金属电偶腐蚀进行原位检测,为深入研究金属电偶腐蚀提供了新途径。介绍了金属电偶腐蚀的基本原理及其主要影响因素,综述了丝束电极技术(WBE)、局部电化学阻抗谱技术(LEIS)、扫描振动电极技术(SVET)、扫描电化学显微技术(SECM)、扫描开尔文探针技术(SKP)等常用的微区电化学测量技术的优缺点及应用现状,最后对其未来发展进行了展望。

本文引用格式

王通 , 李长光 , 李兆斌 . 微区电化学测量技术在金属电偶腐蚀中的应用[J]. 材料保护, 2023 , 56(6) : 156 -163 . DOI: 10.16577/j.issn.1001-1560.2023.0147

Abstract

Micro-area electrochemical measurement technique can detect metal galvanic corrosion in situ at the micron or even sub-micron scale, which provides a new way for further study of metal galvanic corrosion. In this paper, the basic principle and main influencing factors of metal galvanic corrosion were introduced. The advantages, disadvantages and application status of commonly used micro-area electrochemical measurement techniques such as wire beam electrode (WBE), localized electrochemical impedance spectroscopy (LEIS), scanning vibrating electrode technique (SVET), scanning electrochemical microscopy (SECM), and scanning Kelvin probe (SKP) were reviewed in metal galvanic corrosion research. Finally, the future development of the micro-area electrochemical measurement technique was prospected.

参考文献

[1] DU X Q, YANG Q S, CHEN Y, et al. Galvanic corrosion behavior of copper/titanium galvanic couple in artificial seawater[J]. Transactions of Nonferrous Metals Society of China, 2014,24(2):570-581.
[2] 王 雷,孔小东,苏小红,等.微区电化学方法在电偶腐蚀领域的应用[J]. 材料保护, 2020, 53(1):157-163.
WANG L, KONG X D, SU X H, et al. Application of micro-area electrochemical method in field of galvanic corrosion[J]. Materials Protection, 2020, 53(1):157-163.
[3] ZHU J Y, XU L N, FENG Z V, et al. Galvanic corrosion of a welded joint in 3Cr low alloy pipeline steel[J]. Corrosion Science, 2016, 111:391-403.
[4] WINT N, LEUNG J, SULLIVAN J H, et al. The galvanic corrosion of welded ultra-high strength steels used for automotive applications[J]. Corrosion Science, 2018, 136: 366-373.
[5] 梅 婉,王泽华,张 欣,等. 金属材料的电偶腐蚀及其防护技术研究进展[J]. 热加工工艺, 2022, 51(4):15-21.
MEI W, WANG Z H, ZHANG X, et al. Research progress of galvanic corrosion and protection technology of metal materials[J]. Hot Working Technology, 2022, 51(4):15-21.
[6] 史林军.海洋环境中三金属电偶腐蚀行为研究及有限元模拟[D]. 合肥:中国科学技术大学, 2021.
SHI L J. Experimental and simulation study of tri-metallic galvanic corrosion in marine environment[D]. Hefei: University of Science and Technology of China, 2021.
[7] HE J, GELLING V J, TALLMAN D E, et al. Conducting polymers and corrosion III. A scanning vibrating electrode study of poly (3-octyl pyrrole) on steel and aluminum[J]. Journal of The Electrochemical Society, 2000,147(10): 3 667-3 672.
[8] DESHPANDE K B. Numerical modeling of micro-galvanic corrosion[J]. Electrochim Acta, 2011, 56(4):1 737-1 745.
[9] JIN T Y, CHENG Y F. In situ characterization by localized electro-chemical impedance spectroscopy of the electrochemical activity of microscopic inclusions in an X100 steel[J]. Corrosion Science, 2011, 53(2):850-853.
[10] SNIHIROVA D, Höche D, LAMAKA S, et al. Galvanic corrosion of Ti6Al4V-AA2024 joints in aircraft environment: Modelling and experimental validation[J]. Corrosion Science, 2019, 157:70-78.
[11] ZHAO Q Y, ZHAO J B, CHENG X Q, et al. Galvanic corrosion of the anodized 7050 aluminum alloy coupled with the low hydrogen embrittlement Cd-Ti plated 300M steel in an industrial-marine atmospheric environment[J]. Surface & Coatings Technology, 2020, 382:125-171.
[12] UMEDA J, NAKANISHI N, KONDOH K, et al. Surface potential analysis on initial galvanic corrosion of Ti/Mg-Al dissimilar material[J]. Materials Chemistry and Physics, 2016, 179:5-9.
[13] WANG P J, CAI J X, CHENG X Q, et al. Inhibition of galvanic corrosion between crystallographic orientations in low alloy steel by grain ultra-refinement[J]. Materials Today Communications, 2022, 31:103742.
[14] MANSFELD F, KENDEL J V. Laboratory studies of galvanic corrosion of aluminum alloys[J]. ASTM Special Technical Publications, 1974(1):20-47.
[15] 滕 琳,陈 旭.海洋环境中金属电偶腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(4):531-539.
TENG L, CHEN X. Research progress of galvanic corrosion in marine environment[J]. Journal of Chinese Society for Corrosion and Protection, 2022, 42(4):531-539.
[16] CAMPBELL S A, RADFORD G J W, TUCK C D S, et al. Corrosion and galvanic compatibility studies of a high-strength copper-nickel alloy[J]. Corrosion, 2002, 58(1): 5.
[17] EVANS U R. Metal corrosion passivity and protection[M]. London: Edward Arnold and Co, 1937.
[18] RICHARDSON J A, WOOD G C. A study of pitting corrosion of Al by scanning electron microscopy[J]. Corrosion Science, 1970, 10(5):313-323.
[19] FLORIAN M. Area relationships in galvanic corrosion[J]. Corrosion, 1971,27(10):436-442.
[20] 杜 敏,郭庆锟,周传静.碳钢/Ti和碳钢/Ti/海军黄铜在海水中电偶腐蚀的研究[J]. 中国腐蚀与防护学报, 2006, 26(5):253-266.
DU M, GUO Q K, ZHOU C J. Study on galvanic corrosion of carbon steel/Ti and carbon steel/Ti/navy brass in seawater[J]. Journal of Chinese Society for Corrosion and Protection, 2006, 26(5):253-266.
[21] SONG G L, JOHANNESSON B, HAPUGODA S, et al. Galvanic corrosion of magnesium alloy AZ91D in contact with an aluminium alloy, steel and zinc[J]. Corrosion Science, 2004, 46(4):955-977.
[22] 张 勇,陈跃良,王晨光.模拟沿海大气环境下铝合金搭接件电偶腐蚀行为研究[J]. 材料导报, 2016, 30(5):152-155.
ZHANG Y, CHEN Y L, WANG C G. Study on galvanic corrosion of aluminum alloy related joint in simulated coastal wet atmosphere[J]. Materials Reports, 2016, 30(5):152-155.
[23] WANG R G, NAGAGO H. Galvanic Corrosion Behavior between Aluminum and Copper Caused by NaCl Aqueous Solutions[J]. Zairyo-to-Kankyo, 2011, 60(1):22-27.
[24] 孙禹宏,李竹影,张旺洲,等.钛合金和95#钢的电偶腐蚀研究[J]. 装备环境工程, 2014, 11(2):7-10.
SUN Y H, LI Z Y, ZHANG W Z, et al. Study on galvanic corrosion of titanium alloy and 95# steel[J]. Equipment Environmental Engineering, 2014, 11(2): 7-10.
[25] 彭泽煊,吴建华,王春丽.温度对工业纯钛与低合金钢电偶腐蚀行为的影响[J]. 腐蚀科学与防护技术, 2013, 25(6):463-469.
PENG Z X, WU J H, WANG C L. Influence of temperature on galvanic corrosion of commercially pure titanium/low alloying steel in seawater[J]. Corrosion Science and Protection Technology, 2013, 25(6): 463-469.
[26] VARELA F E, KURATA Y, SANADA N. The influence of temperature on the galvanic corrosion of a cast iron-stainless steel couple (prediction by boundary element method)[J]. Corrosion Science, 1997, 39(4): 775-788.
[27] 崔艳雨,迪丽努尔·迪力木拉提,禹 浩,等.4J36及4J36-X80偶对电化学腐蚀行为研究[J].材料保护,2020,53(9):18-25.
CUI Y Y, DILINUER D, YU H, et al. Electrochemical corrosion behavior of 4J36 and 4J36-X80 couple pairs[J]. Materials Protection, 2020, 53(9): 18-25.
[28] SHALABY L A. Galvanic coupling of Ti with Cu and Al alloys in chloride media[J]. Corrosion Science, 1971,11(10):767-778.
[29] TAYLOR S R. Incentives for using electrochemical impedance methods in the investigation of organic coatings[J]. Progress in Organic Coatings, 2001, 43:141-148.
[30] 张 春,徐川壁.局部交流阻抗扫描技术在金属电偶腐蚀的研究[J]. 中国腐蚀与防护学报, 1989,9(2):137-143.
ZHANG C, XU C B. Study of local AC impedance scanning technique in galvanic corrosion of metals[J]. Journal of Chinese Society for Corrosion and Protection, 1989,9(2):137-143.
[31] MOUANGA M, PUIGGALI M, TRIBOLLET B, et al. Galvanic corrosion between zinc and carbon steel investigated by local electrochemical impedance spectroscopy[J]. Electrochimica Acta, 2013, 88(15): 6-14.
[32] 丁 莉. 海水淡化装置中TA2/HA177-2/316LSS腐蚀体系微区电化学行为和机理研究[D]. 青岛:中国石油大学(华东),2016.
DING L. The study of microzone electrochemical behavior and mechanism of the corrosion system TA2/HA177-2/316LSS in desalination plants[D]. Qingdao: China University of Petroleum (East China), 2016.
[33] 杨 瑞,李 焰.丝束电极技术在局部腐蚀研究中的应用[J]. 腐蚀科学与防护技术, 2014, 26(3):259-264.
YANG R, LI Y. Application of wire beam electrode technique in local corrosion research[J]. Corrosion Science and Protection Technology, 2014, 26(3):259-264.
[34] 董泽华,郭兴蓬,刘宏芳,等.用丝束电极研究SRB微生物诱导腐蚀的电化学特征[J].中国腐蚀与防护学报,2002, 22(1):48-53.
DONG Z H, GUO X P, LIU H F, et al. The electrochemical characteristics of SRB microbe-induced corrosion were studied by wire beam electrode[J]. Journal of Chinese Society for Corrosion and Protection, 2002, 22(1):48-53.
[35] 董泽华,郭兴蓬,郑家樂,等.用丝束电极研究16Mn钢的缝隙腐蚀行为[J]. 材料保护, 2001, 34(9):6-11.
DONG Z H, GUO X P, ZHENG J L, et al. The crack corrosion behavior of 16Mn steel was studied with wire beam electrode[J]. Materials Protection, 2001, 34(9):6-11.
[36] 张大磊,王 伟,李 焰. 热镀锌钢材的电偶腐蚀行为—划痕型缺陷[J]. 材料研究学报, 2009, 23(4):343-346.
ZHANG D L, WANG W, LI Y. Wire beam electrode technique for investigating galvanic corrosion behavior of hot-dip galvanized steel-scratch defect[J]. Chinese Journal of Materials Research, 2009, 23(4):343-346.
[37] LI Z, LIU J, ZHANG L W, et al. Electrochemical inhomogeneities of steel in steel/copper alloy couple during galvanic corrosion in static and flowing seawater[J]. Materials and Corrosion, 2019, 70(4):726.
[38] BASTOS A C, SIMõES A M, FERREIRA M G. Corrosion of electrogalvanized steel in 0.1 M NaCl studied by SVET[J]. Port Electrochim Acta, 2003, 21(4):371-387.
[39] AKID R, GARMA M. Scanning vibrating reference electrode technique: a calibration study to evaluate the optimum operating parameters for maximum signal detection of point source activity[J]. Electrochim Acta, 2004, 49: 2 871-2 879.
[40] 王力伟,李晓刚,杜翠薇,等. 微区电化学测量技术进展及在腐蚀领域的应用[J]. 中国腐蚀与防护学报,2010,30(6):498-503.
WANG L W, LI X G, DU C W, et al. Recent advances in local electrochemical measurement techniques and applications in corrosion research[J]. Journal of the Chinese Society of Corrosion and Protection, 2010,30(6):498-503.
[41] 张彭辉,逄 琨,丁康康,等.扫描振动电极技术在腐蚀领域的应用进展[J]. 中国腐蚀与防护学报, 2017, 37(4):315-321.
ZHANG P H, PANG K, DING K K, et al. Research progress of scanning vibrating electrode technique in field of corrosion[J]. Journal of Chinese Society for Corrosion and Protection, 2017, 37(4):315-321.
[42] SOUTO R M, GARCIA Y G, BASTOS A C, et al. Investigating corrosion processes in the micrometric range: a SVET study of the galvanic corrosion of zinc coupled with iron[J]. Corrosion Science, 2007, 49(12): 4 568-4 580.
[43] DONATUS U, THOMPSON G E, LIU H, et al. Understanding the galvanic interactions between AA2024T3 and mild steel using the scanning vibrating electrode technique[J]. Materials Chemistry and Physics, 2015, 161:228-236.
[44] BALD A J, FAN F R F, MIRKIN M V. In physical electrochemistry[M]. New York: Marcel Dekker, 1993.
[45] 乔志刚.扫描电化学显微镜技术理论及应用研究[D]. 兰州:西北师范大学, 2011.
QIAO Z D. Research on the theory and application of scanning electrochemical microscopy[D]. Lanzhou: Northwest Normal University,2011.
[46] 龙凤仪,杨 燕,王树立,等.微区电化学测量技术及其在腐蚀中的应用[J]. 腐蚀科学与防护技术, 2015, 27(2):194-198.
LONG F Y, YANG Y, WANG S L, et al. Micro area electrochemical measurement technology and its application in corrosion[J]. Corrosion Science and Protection Technology, 2015, 27(2): 194-198.
[47] Simões A M, BASTOS A C, FERREIRA M G, et al. Use of SVET and SECM to study the galvanic corrosion of an iron-zinc cell[J]. Corrosion Science, 2007, 49(2):726-739.
[48] Filotás D, Fernández-Pérez B M, IZQUIERDO J, et al. Improved potentiometric SECM imaging of galvanic corrosion reactions[J]. Corrosion Science, 2017, 129:136-145.
[49] 刘华剑. 有机涂层下船用钢电偶腐蚀规律研究[D]. 青岛: 中国海洋大学, 2011.
LIU H J. The investigation of galvanic corrosion under the organic coating on ship steel[D]. Qingdao: Ocean University of China, 2011.
[50] 肖 葵,董超芳,李晓刚,等. 采用开尔文扫描探针技术研究镁合金偶接铜合金的电偶腐蚀规律[J]. 工程科学学报, 2010, 32(8):1 023-1 028.
XIAO K, DONG C F, LI X G, et al. Galvanic corrosion evaluation of magnesium alloys coupled with brass alloys studied by scanning Kelvin probe technology[J]. Chinese Journal of Engineering, 2010, 32(8):1 023-1 028.
[51] 黄 宸,黄 峰,张 宇,等. 高强耐候钢焊接接头电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6):527-535.
HUANG C, HUANG F, ZHANG Y, et al. Galvanic corrosion behavior for weld joint of high strength weathering steel[J]. Journal of Chinese Society for Corrosion and Protection, 2019, 39(6):527-535.
[52] YADAV A P, KATAYMA H, NODA K, et al. Surface potential distribution over a zinc/steel galvanic couple corroding under thin layer of electrolyte[J]. Electrochimica Acta, 2007, 52(9):3 121-3 129.
文章导航

/