[1] ZHANG J X, FAN J C, XIE Y J, et al. Research on erosion of metal materials for high pressure pipelines[J]. Advanced Materials Research, 2012, 482-484: 1 592-1 595.
[2] 付秀勇,徐久龙,李 军,等. 凝析气田集输管道的冲刷腐蚀与防护[J]. 石油化工腐蚀与防护, 2008, 25(2): 20-23.
FU X Y, XU J L, LI J, et al. Erosion corrosion and protection of gathering pipeline in condensate gas field[J]. Corrosion & Protection in Petrochemical Industry, 2008, 25(2): 20-23.
[3] 姜晓霞,李诗卓,李 曙. 金属的腐蚀磨损[M]. 北京:化学工业出版社,2003: 1.
JIANG X X, LI S Z, LI S. Corrosion and wear of metals[M]. Beijing: Chemical Industry Press, 2003:1.
[4] ZHANG L, LI X G, DU C W, et al. Corrosion and stress corrosion cracking behavior of X70 pipeline steel in a CO2-containing solution[J]. Journal of Materials Engineering and Performance, 2009, 18(3): 319-323.
[5] GAO K, YU F, PANG X, et al. Mechanical properties of CO2 corrosion product scales and their relationship to corrosion rates[J]. Corrosion Science, 2008, 50(10): 2 796-2 803.
[6] DUGSTAD A. Fundamental aspects of CO2 metal loss corrosion — part Ⅰ: mechanism:Proceedings of the NACE International Corrosion Conference & Expo[C]. Huston:[s.n.],2006.
[7] WEI L, PANG X, LIU C, et al. Formation mechanism and protective property of corrosion product scale on X70 steel under supercritical CO2 environment[J]. Corrosion Science, 2015, 100: 404-420.
[8] HASSANI S, ROBERTS K P, SHIRAZI S A, et al. Flow loop study of NaCl concentration effect on erosion, corrosion, and erosion-corrosion of carbon steel in CO2-saturated systems[J]. Corrosion, 2012, 68(2): 026001.
[9] ZHANG G A, ZENG Y, GUO X P, et al. Electrochemical corrosion behavior of carbon steel under dynamic high pressure H2S/CO2 environment[J]. Corrosion Science, 2012, 65: 37-47.
[10] SHADLEY J R, SHIRAZI S A, DAYALAN E, et al. Prediction of erosion-corrosion penetration rate in a carbon dioxide environment with sand[J]. Corrosion, 1998, 54(12): 972-978.
[11] ISLAM M A, FARHAT Z. Erosion-corrosion mechanism and comparison of erosion-corrosion performance of API steels[J]. Wear, 2017, 376-377: 533-541.
[12] ZHANG G A, LIU D, LI Y Z, et al. Corrosion behaviour of N80 carbon steel in formation water under dynamic supercritical CO2 condition[J]. Corrosion Science, 2017, 120: 107-120.
[13] MALKA R, Nešić S, GULINO D A. Erosion-corrosion and synergistic effects in disturbed liquid-particle flow[J]. Wear, 2007, 262(7/8): 791-799.
[14] OKONKWO PAUL C, SHAKOOR R A, MOHAMED A M A. Synergistic Erosion-Corrosion Behavior of API X120 Steel[J]. Materials Today: Proceedings, 2020, 32: 37-43.
[15] AMINUL ISLAM M, FARHAT Z N, AHMED E M, et al. Erosion enhanced corrosion and corrosion enhanced erosion of API X-70 pipeline steel[J]. Wear, 2013, 302(1/2): 1 592-1 601.
[16] GUO H X, LU B T, LUO J L. Interaction of mechanical and electrochemical factors in erosion–corrosion of carbon steel[J]. Electrochimica Acta, 2005, 51(2): 315-323.
[17] Nešić S, POSTLETHWAITE J, OLSEN S J. An electrochemical model for prediction of corrosion of mild steel in aqueous carbon dioxide solutions[J]. Corrosion Science, 1996, 52(4): 280-294.
[18] ZHANG Y, PANG X, QU S, et al. Discussion of the CO2 corrosion mechanism between low partial pressure and supercritical condition[J]. Corrosion Science, 2012, 59: 186-197.
[19] LUQMAN A, MOOSAVI A. The impact of CO2 injection for EOR & its breakthrough on corrosion and integrity of new and existing facilities:Abu Dhabi International Petroleum Exhibition & Conference[C]. Abu Dhabi:[s.n.], 2016.
[20] ELGADDAFI R, NAIDU A, AHMED R, et al. Modeling and experimental study of CO2 corrosion on carbon steel at elevated pressure and temperature[J]. Journal of Natural Gas Science and Engineering, 2015, 27: 1 620-1 629.
[21] CHOI Y S, Nešić S. Determining the corrosive potential of CO2 transport pipeline in high pCO2-water environments[J]. International Journal of Greenhouse Gas Control, 2011, 5(4): 788-797.
[22] TANUPABRUNGSUN T, YOUNG D, BROWN B, et al. Construction and verification of Pourbaix diagrams for CO2 corrosion of mild steel valid up to 250 ℃: The Corrosion 2012[C]. Salt Lake City:[s.n.], 2012.
[23] Nešić S, LI H, SORMAZ D, et al. A free open source mechanisitc model for prediction of mild steel corrosion:17th international corrosion congress & expo[C]. Houston:[s.n.],2008.
[24] Nešić S, LEE J, RUZIC V. A mechanistic model of iron carbonate film growth and the effect on CO2 corrosion of mild steel: Proceedings of the CORROSION 2002[C]. Denver:[s.n.], 2002.
[25] Nešić S, LEE K L J. A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films—part 3: Film growth model[J]. Corroison, 2003, 59(7):616-628.
[26] Nešić S. Effects of multiphase flow on internal CO2 corrosion of mild steel pipelines[J]. Energy & Fuels, 2012, 26(7): 4 098-4 111.
[27] LI J L, MA H X, ZHU S D, et al. Erosion resistance of CO2 corrosion scales formed on API P110 carbon steel[J]. Corrosion Science, 2014, 86: 101-107.
[28] KUMAGAI A, YOKOYAMA C H. Viscosities of aqueous NaCl solutions containing CO2 at high pressures[J]. Journal of Chemical and Engineering Data, 1999, 44(2): 227-229.
[29] HAMIDI H, MOHD ATIB N F A, AZDARPOUR A, et al. Study of CO2 solubility in brine under different temperatures and pressures[J]. Advanced Materials Research, 2015, 1 113: 440-445.
[30] NOR A M, SUHOR M F, MOHAMED M F, et al. Corrosion of carbon steel in high CO2 environment: flow effect: Procedings of the NACE Corroison 2011 Conference[C]. Houston:[s.n.], 2011.
[31] 樊学华,柳 伟,祝亚茹,等. 高温高压条件下流速对X70钢CO2冲刷腐蚀行为的影响[J].表面技术,2020, 49(12): 306-314.
FAN X H, LIU W, ZHU Y R, et al. Influence of impingement velocity on CO2 erosion-corrosion behaviour of X70 steel at high-temperature and high-pressure conditions[J]. Surface Technology, 2020, 49(12): 296-304.
[32] QIU Z, XIONG C, YE Z, et al. Corrosion behavior of N80 steel in CO2-saturated formation water[J]. Anti-Corrosion Methods and Materials, 2019, 66(4): 464-470.
[33] TAN Z, YANG L, ZHANG D, et al. Development mechanism of internal local corrosion of X80 pipeline steel[J]. Journal of Materials Science & Technology, 2020, 49: 186-201.
[34] RINCON H E, SHADLEY J R, RYBICKI E F, et al. Erosion-corrosion of carbon steel in CO2 saturated multiphase flows containing sand: Proceedings of the NACE International CORROSION/2006 Conference[C]. Sandiego:[s.n.], 2006.
[35] LIU W, DOU J, LU S, et al. Effect of silty sand in formation water on CO2 corrosion behavior of carbon steel[J]. Applied Surface Science, 2016, 367: 438-448.
[36] OBOT I B. Under-deposit corrosion on steel pipeline surfaces: mechanism, mitigation and current challenges[J]. Journal of Bio- and Tribo-Corrosion, 2021, 7(2):1-14.
[37] SHADLEY J R, SHIRAZI S A, DAYALAN E, et al. Erosion-corrosion of a carbon steel elbow in a carbon dioxide Environment[J]. Corrosion-Us, 1996, 52(9):714-723.
[38] TANG G A T K, FOO H C Y, TAN I S, et al. Influence of flow limiter and grain shape factor of sand particles on erosion activity in pipeline[J]. IOP Conference Series: Materials Science and Engineering, 2020, 943: 012024.
[39] AL-BUKHAITI M A, ABOUEL-KASEM A, EMARA K M, et al. Particle shape and size effects on slurry erosion of AISI 5117 steels[J]. Journal of Tribology, 2016, 138(2): 024503.
[40] TOOR I, IRSHAD H, BADR H, et al. The effect of impingement velocity and angle variation on the erosion corrosion performance of API 5L-X65 carbon steel in a flow loop[J]. Metals, 2018, 8(6): 402.
[41] LI J L, ZHU S D, QUN C T. Abrasion resistances of CO2 corrosion scales formed at different temperatures and their relationship to corrosion behaviour[J]. Corrosion Engineering, Science and Technology, 2013, 49(1): 73-79.
[42] SUN W, Nešić S, WOOLLAM R C. The effect of temperature and ionic strength on iron carbonate (FeCO3) solubility limit[J]. Corrosion Science, 2009, 51(6): 1 273-1 276.
[43] YIN Z F, FENG Y R, ZHAO W Z, et al. Effect of temperature on CO2 corrosion of carbon steel[J]. Surface and Interface Analysis, 2009, 41(6): 517-523.
[44] ELGADDAFI R, AHMED R, OSISANYA S. Modeling and experimental study on the effects of temperature on the corrosion of API carbon steel in CO2-Saturated environment[J]. Journal of Petroleum Science and Engineering, 2021, 196:107816.
[45] YE Z R, QIU Z C, YI R, et al. Effect of temperature on corrosion behaviour of N80 steel in CO2-saturated formation water[J]. IOP Conference Series: Materials Science and Engineering, 2019, 504(1):012040.
[46] FRANCKE H, THORADE M. Density and viscosity of brine: An overview from a process engineers perspective[J]. Chemie der Erde - Geochemistry, 2010, 70(S3): 23-32.
[47] HU X, NEVILLE A. CO2 erosion-corrosion of pipeline steel (API X65) in oil and gas conditions—A systematic approach[J]. Wear, 2009, 267(11): 2 027-2 032.
[48] NESIC S, NYBORG R, STANGELAND A, et al. Mechanistic modeling for CO2 corrosion with protective iron carbonate films: Proceedings of the CORROSION 2001[C]. Houston:[s.n.], 2001.
[49] MUTAHHAR F, AITHAN G, ISKI E V, et al. Mechanistic modeling of erosion–corrosion for carbon steel[M].[S.l.]:Trends in Oil and Gas Corrosion Research and Technologies, 2017: 749-763.
[50] MASAKATSU U. Potential pH diagram at elevated temperatures for metal-CO2/H2S-water systems and the application for the corrosion of pure iron[J]. Zairyo-to-Kankyo, 2009, 44(3): 142-150.
[51] HONARVAR NAZARI M, ALLAHKARAM S R, KERMANI M B. The effects of temperature and pH on the characteristics of corrosion product in CO2 corrosion of grade X70 steel[J]. Materials & Design, 2010, 31(7): 3 559-3 563.
[52] SNESIC S, WANG S, GEORGE K. High pressure CO2 corrosion electrochemistry and the effect of acetic acid: Proceedings of the CORROSION 2004[C]. New Orleans:[s.n.], 2004.
[53] YAN W, HUANG S, STENBY E H. Measurement and modeling of CO2 solubility in NaCl brine and CO2–saturated NaCl brine density[J]. International Journal of Greenhouse Gas Control, 2011, 5(6): 1 460-1 477.
[54] MOHAMED M F, NOR A M, SUHOR M F, et al. Water chemistry for corrosion prediction in high pressure CO2 environments: Proceedings of the NACE International corrosion conference & expo[C]. Houston:[s.n.], 2011.
[55] RAMACHANDRAN S, CAMPBELL S, WARD M B. The interactions and properties of corrosion inhibitors with byproduct layers: Proceedings of the CORROSION 2000[C]. Orlando:[s.n.], 2000.
[56] SONG F M. Predicting the mechanisms and crack growth rates of pipelines undergoing stress corrosion cracking at high pH[J]. Corrosion Science, 2009, 51(11): 2 657-2 674.