Email Alert  RSS
实用技术

缓蚀剂联合阴极保护套管的内防腐技术研究

展开
  • (1.中国石油长庆油田分公司第二采油厂, 甘肃 庆阳 745100;2.西安石油大学材料科学与工程学院, 陕西 西安 710065)
徐建国(1986-),油气田开发工程师,主要从事油田开发管理与采油技术研究,电话:0934-8597426,E-mail:xjg001_cq@petrochina.com.cn

收稿日期: 2023-03-17

  修回日期: 2023-04-12

  录用日期: 2023-05-20

  网络出版日期: 2023-09-15

基金资助

国家自然科学基金青年科学基金项目(51902254);陕西省自然科学基础研究计划(2016JM5064, 2018JQ5108)资助

Research on Internal Corrosion Protection Technology of Corrosion Inhibitor Combined with Cathodic Protection Casing

Expand
  • (1.Oil Production Plant, PetroChina Changqing Oilfield, Qingyang 745100, China;2.School of Material Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China)

Received date: 2023-03-17

  Revised date: 2023-04-12

  Accepted date: 2023-05-20

  Online published: 2023-09-15

摘要

针对油井套管的内腐蚀问题,采用高温高压失重试验及极化曲线、交流阻抗谱和恒电位极化等电化学测试技术,结合有限元模拟计算,研究了固体缓蚀剂联合阴极保护的套管内防腐技术及其协同促进机制。 结果表明:固体缓蚀剂现场加注浓度为120 mg/L 时,其对J55 套管的缓蚀率为85.91%,满足标准要求,但腐蚀速率仍然较高,为0.307 9 mm/a;该固体缓蚀剂为阴极型缓蚀剂,阴极保护可显著促进缓蚀剂粒子的吸附阻滞效果,外加-50 mV 阴极极化电位后,缓蚀剂吸附极化电阻由505.59 Ω·cm2增加到1 878.50 Ω·cm2;通过有限元模拟软件计算得到高温铝阳极对J55 裸钢管的保护距离仅11.104 m,采用固体缓蚀剂联合牺牲阳极阴极保护措施后,固体缓蚀剂延长了牺牲阳极的保护距离,随着缓蚀剂覆盖率的增加,有效保护距离不断延长,当覆盖率达到98%时,有效保护距离超过100 m;固体缓蚀剂和阴极保护具有协同促进作用,室内实验得到联合作用下J55 套管均匀腐蚀速率降低到0.010 2 mm/a,缓蚀率达到99.53%,具有优异的保护效果。

本文引用格式

徐建国, 陈作明, 赵凯峰, 陈伟, 张鑫鑫, 邓菁玉, 李宁, 王晨, 吕祥鸿 . 缓蚀剂联合阴极保护套管的内防腐技术研究[J]. 材料保护, 2023 , 56(9) : 161 -168 . DOI: 10.16577/j.issn.1001-1560.2023.0227

Abstract

For the internal corrosion problem of oil well casing, high-temperature and high-pressure weight loss tests, polarization curves, AC impedance spectroscopy, and potentiostatic polarization electrochemical testing techniques were used, combined with finite element simulation calculations, to study the casing internal corrosion protection technology of solid corrosion inhibitors combined with cathodic protection and its synergistic promotion mechanism.Results showed that the corrosion inhibition rate of J55 casing was 85.91%when the on-site concentration of solid corrosion inhibitor was 120 mg/L, meeting the standard requirements, but the corrosion rate was relatively high, which was 0.307 9 mm/a.The selected solid corrosion inhibitor belonged to the cathodic corrosion inhibitor.Therefore, cathodic protection could significantly promote the adsorption and retardation effect of corrosion inhibitor particles.After adding-50 mV cathodic polarization potential,the adsorption polarization resistance of corrosion inhibitor increased from 505.59 Ω·cm2 to 1 878.50 Ω·cm2.The protection distance of the high-temperature aluminum anode to the J55 bare steel pipe was calculated by finite element simulation software, which was only 11.104 m.After applying the solid corrosion inhibitor combined with sacrificial anode cathodic protection, solid corrosion inhibitor extended the protection distance of the sacrificial anode.The effective protection distance continued to extend as corrosion inhibitors coverage increased continuously.When the corrosion inhibitor coverage reached 98%, the effective protection distance was above 100 m.The solid corrosion inhibitor and cathodic protection had a synergistic promotion effect.Indoor experiments showed that under the combined action, the uniform corrosion rate of J55 casing decreased to 0.010 2 mm/a, and the corrosion inhibition rate reached 99.53%, demonstrating excellent protective effects.

参考文献

[1] 任永峰,黄晓辉,张 鹏,等.J55 HFW 油管洛河水腐蚀试验研究[J].焊管,2015,38(12):18-22.REN Y F, HUANG X H, ZHANG P,et al.J55 HFW oil pipe Luohe water corrosion test research[J].Welded Pipe and Tube, 2015,38(12):18-22.

[2] 姬文婷.CO2/H2S 对油气田常用钢材腐蚀规律及防腐技术研究进展[J].延安大学学报(自然科学版),2020,39(1):97-101.JI W T.Research progress on CO2/H2 S corrosion law and anticorrosion technology of commonly used steel in oil and gas fields[J].Journal of Yan’an University(Natural Science Edition) ,2020,39(1):97-101.

[3] 林 海,许 杰,幸雪松,等.L80 油管钢在CO2/H2S 环境中的腐蚀行为[J].表面技术,2016,45(5):84-90.LIN H, XU J, XING X S, et al.Corrosion behavior of L80 tubing steel in CO2/ H2S environment[J].Surface Technology,2016,45(5):84-90.

[4] POPOOLA L T, GREMA A S, LATINWO G K, et al.Corrosion problems during oil and gas production and its mitigation[J].International Journal of Industrial Chemistry,2013,4(1):1-15.

[5] 周 妍,李 震,甘 宁,等.长庆油田套损井综合防治技术[J].测井技术,2021,45(2):196-200.ZHOU Y, LI Z, GAN N,et al.Comprehensive prevention technology for casing damaged wells in Changqing oilfield[J].Well Logging Technology,2021,45(2):196-200.

[6] 王景博,张珊慧,陈 武.油气田固体缓蚀剂的研究及应用进展[J].全面腐蚀控制,2016,30(6):42-47.WANG J B, ZHANG S H, CHEN W.Research and application progress of solid corrosion inhibitor in oil and gas field[J].Total Corrosion Control,2016,30(6):42-47.

[7] 艾俊哲,段立东,王 欢.咪唑啉固体缓蚀剂的溶解性能及缓蚀性能[J].腐蚀与防护,2019,40(10):740-746.AI J Z, DUAN L D, WANG H.Solubility and corrosion inhibition performance of imidazoline solid inhibitor[J].Corrosion & Protection,2019,40(10):740-746.

[8] 石 鑫,曾文广,刘冬梅,等.固体缓蚀剂的耐温性及释放速率试验[J].油田化学,2019,36(2):348-352.SHI X, ZENG W G, LIU D M,et al.Experimental study on temperature resistance and release rate of solid corrosion inhibitor[J].Oilfield Chemistry,2019,36(2):348-352.

[9] 王 伟,荣沙沙,王 正,等.油田用咪唑啉固体缓蚀剂的缓蚀行为[J].长江大学学报(自科版),2018,15(9):21-24.WANG W, RONG S S, WANG Z,et al.Property evaluation of a solid imidazoline corrosion inhibitor used in oilfield[J].Journal of Yangtze University(Natural Science Edition),2018,15(9):21-24.

[10] 韩敏娜,于洪江,周建猛.高温固体缓蚀剂XH-3 的研制与应用[J].广州化工,2016,44(19):159-161.HAN M N, YU H J, ZHOU J M.Development and application of high-temperature solid inhibitor of XH-3[J].Guangzhou Chemical Industry,2016,44(19):159-161.

[11] 施明华,王旭东,唐 晓.固体缓蚀剂对抽油杆材料CO2腐蚀行为的影响[J].腐蚀与防护,2016,37(5):402-406.SHI M H,WANG X D,TANG X.Effect of solid inhibitor on CO2 corrosion behavior for sucker rod[J].Corrosion & Protection,2016,37(5):402-406.

[12] 陈 宇.金属表面防护性涂层评价及缓蚀剂技术研究[D].杭州:浙江大学,2013.CHEN Y.Study on the evaluation of protective coatings and the inhibitor technigue[D].Hangzhou: Zhejiang University,2013.

[13] 雷 佳.基于启发式算法的油气管道阴极保护电位优化研究[D].西安:西安石油大学,2020.LEI J.Research on optimization of cathodic protection potential of oil and gas pipelines based on heuristic algorithm[D].Xi’an: Xi’an Shiyou University,2020.

[14] 刘 波,王树立,赵永刚,等.各因素对套管内管道阴极保护影响的数值模拟[J].腐蚀与防护,2017,38(2):107-112.LIU B, WANG S L, ZHAO Y G, et al.Numerical simulation of effects of influence factors on cathodic protection of pipeline in casing[J].Corrosion & Protection,2017,38(2):107-112.

[15] 郭 金,冀光峰,林洞峰,等.套管对输油管道阴极保护电位影响数值模拟研究[J].石油工程建设,2021,47(5):25-29.GUO J, JI G F, LIN D F, et al.Numerical simulation study for effect of casing on cathode protection potential of oil pipeline[J].Petroleum Engineering Construction,2021,47(5):25-29.

[16] 陈九安.长输干线阴极保护电位分布的数值模拟[D].青岛:中国石油大学(华东),2014.CHEN J A.Numerical simulation of cathodic protection potential distribution along long distance pipeline[D].Qingdao:China University of Petroleum(East China),2014.

[17] SY/T 5273-2014,油田采出水处理用缓蚀剂性能指标及评价方法[S].SY/T 5273-2014,Technical specifications and evaluating methods of corrosion - inhibitors for oilfield produced water[S].

[18] 曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2008.CAO C N, ZHANG J Q.Principles of Electrochemistry of Corrosion[M].Biejing: Science Press, 2008.

[19] 曹楚南.腐蚀电化学原理[M].北京:化学工业出版社,2002.CAO C N.An Introduction to Electrochemical Impedance Spectroscopy[M].Beijing: Chemical Industry Press, 2002.

[20] GB/T 21448-2017,埋地钢质管道阴极保护技术规范[S].GB/T 21448-2017,Specification of cathodic protection for underground steel pipelines[S].

文章导航

/