Email Alert  RSS
表面微纳结构与纳米涂层专栏

表面微纳结构的特殊功能及制备方法研究进展

  • 赵元亮 ,
  • 吴永玲 ,
  • 郑宏宇
展开
  • 山东理工大学机械工程学院,山东淄博 255000
吴永玲(1962-),博士,特聘教授,主要研究方向为溶胶凝胶涂层材料的合成与应用、多功能表面涂层、功能表面微纳结构激光制造共性技术,电话:17801091873,E-mail:ylwu06@sdut.edu.cn

收稿日期: 2022-11-23

  修回日期: 2022-12-15

  录用日期: 2023-01-19

  网络出版日期: 2023-07-14

基金资助

国家重点研发计划(2022YFE0199100);山东省自然科学基金(ZR2020QE162, ZR2020ME047, ZR2020ME164)资助

Research Progress of Surface Micro / Nano Structures Preparation Methods and Their Special Properties

  • ZHAO Yuan-liang ,
  • WU Yong-ling ,
  • ZHENG Hong-yu
Expand
  • School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China

Received date: 2022-11-23

  Revised date: 2022-12-15

  Accepted date: 2023-01-19

  Online published: 2023-07-14

摘要

通过构建表面微纳结构和制备纳米涂层可使材料表面获得特殊功能。主要综述了表面微纳结构的特殊功能和制备表面微纳结构和纳米涂层的主要方法和加工技术。首先,介绍了表面微纳结构在超疏水、光学超透镜和减摩耐磨方面的应用;其次,分别阐述了光刻技术、激光加工技术、自组装技术、增材制造技术(3D打印)、沉积法和溶胶凝胶法等表面微纳结构和纳米涂层的加工方法的研究进展;最后,总结了表面微纳结构及纳米涂层的不同制备方法存在的问题和发展趋势。

本文引用格式

赵元亮 , 吴永玲 , 郑宏宇 . 表面微纳结构的特殊功能及制备方法研究进展[J]. 材料保护, 2023 , 56(5) : 1 -15 . DOI: 10.16577/j.issn.1001-1560.2023.0103

Abstract

Constructing surface micro/nano structures and preparing nano-coatings could endow the material surface with special performance. In this work, the special functions of surface micro/nano structures, as well as the main methods and processing technologies for preparing surface micro/nano structures and nano-coatings were mainly reviewed. Firstly, the applications of surface micro/nano structures in superhydrophobicity, optical superlens, friction and wear were introduced. Secondly, the research progress of lithography technology, laser processing technology, self-assembly technology, additive manufacturing technology (3D printing), processing methods of surface micro/nano structures and nano-coatings, such as deposition method and sol-gel method, was described, respectively. Finally, the problems and development trend of different preparation methods of surface micro/nano structures and nano-coatings were summarized.

参考文献

[1] WANG A Q, GAO S J, ZHU Y Z, et al. Fast and integral nano-surface-coating of various fiber materials via interfacial polymerization[J]. ACS Macro Letters,2023,12(1):93-100.
[2] ZHANG W L, WANG D H, SUN Z N, et al. Robust superhydrophobicity mechanisms and strategies[J]. Journal of Chemical Society Reviews, 2021, 50(6): 4 031-4 061.
[3] YONG J L, YANG Q, CHEN F, et al. A simple way to achieve superhydrophobicity controllable water adhesion anisotropic sliding and anisotropic wetting based on femtosecond-laser-induced line-patterned surfaces[J]. Journal of Materials Chemistry A, 2014, 2(15): 5 499-5 507.
[4] PARK S H, LEE S, MOREIRA D,et al. Bioinspired superhydrophobic surfaces,fabricated through simple and scalable roll-to-roll processing[J]. Scientific Reports, 2015, 5: 15 430.
[5] WANG Y, MA K, ZHANG T, et al. Iodine-inducedself-assembly structure transition of organic molecules on the Ag(111) surface[J]. Journal of Physical Chemistry C, 2023, 127(3): 1 381-1 387.
[6] 王锁成, 董世运, 闫世兴, 等. 飞秒激光制备金属表面微纳结构及其技术应用[J/OL]. 激光与光电子学进展:1-26[2023-04-25]. http://kns.cnki.net/kcms/detail/31.1690.TN.20221031.1529.012.html.
WANG S C, DONG SY, YAN S X, et al. Fabrication of micro/nanostructures on metal surfaces by femtosecond laser and its technical applications[J/OL]. Laser & Optoelectronics Progress:1-26[2023-04-25]. http://kns.cnki.net/kcms/detail/31.1690.TN.20221031.1529.012.html.
[7] JIANG R J, HAO L W, SONG L J, et al. Lotus-leaf-inspired non-fouling, mechanical bactericidal surfaces[J]. Chemical Engineering Journal, 2020, 398:125 609.
[8] KIM W, KIM D, PARK S, et al. Engineering lotus leaf-inspired micro-and nanostructures for the manipulation of functional engineering platforms[J]. Journal of Industrial and Engineering Chemistry, 2017, 61: 39-52.
[9] WU Y L, SHAO Q, WANG X C, et al.Hierarchical structured Sol-Gel coating by laser textured template imprinting for surface superhydrophobicity[J]. Soft Matter, 2012(8): 6 232-6 238.
[10] WANG Y H, ZHANG Z B, XU J K, et al. One-step method using laser for large-scale preparation of bionic superhydrophobic & drag-reducing fish-scale surface[J]. Surface and Coatings Technology, 2021, 409: 126 801.
[11] CHU D K, SINGH S C, YONG J L, et al. Superamphiphobic surfaces with controllable adhesion fabricated by femtosecond laser Bessel beam on PTFE [J]. Advanced Materials Interfaces, 2019, 6(14): 1 900 550.
[12] XIN G Q, WU C Y, CAO H Y, et al. Superhydrophobic TC4 alloy surface fabricated by laser micro-scanning to reduce adhesion and drag resistance [J]. Surface and Coatings Technology, 2020, 391: 125 707.
[13] EXIR H, WECK A. Mechanism of superhydrophilic to superhydrophobic transition of femtosecond laser-induced periodic surface structures on titanium[J]. Surface and Coatings Technology, 2019, 378: 124 931.
[14] CHENG Z, ZHANG D, LV T, et al. Superhydrophobic shape memory polymer arrays with switchable isotropic/anisotropic wetting[J]. Advanced Functional Materials, 2017, 28(7): 1 705 002.
[15] WANG D, SUN Q, HOKKANEN M J, et al. Design of robust superhydrophobic surfaces[J]. Nature, 2020, 582(7 810): 55-59.
[16] WANG L Z, TIAN Z, JIANG G C. et al. Spontaneous dewetting transitions of droplets during icing & melting cycle[J]. Nature Communications, 2022, 13:378.
[17] SUN Y F, GAO X P, SHI W A, et al. Hydrophobic multifunctional flexible sensors with a rapid humidity response for long-term respiratory monitoring[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(6): 2 375-2 386.
[18] HSIAO H H, CHU C H, TSAI D P. Fundamentals and applications of metasurfaces[J]. Small Methods, 2017, 1(4): 1 600 064.
[19] 罗栩豪, 董思禹, 王占山, 等. 超表面VR/AR显示技术研究进展[J].激光与光电子学进展,2022,59(20):22-38.
LUO X H, DONG S Y, WANG Z S, et al. Research progress of metasureface-based VR/AR display technology [J]. Laser & Optoelectronics Progress, 2022,59(20):22-38.
[20] PARK K C, CHOI H J, CHANG C H, et al. Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity[J]. ACS Nano, 2012, 6(5): 3 789-3 799.
[21] ZHANG W, WANG H, WANG H, et al. Structural multi-colour invisible inks with submicron 4D printing of shape memory polymers[J]. Nature Communications, 2021, 12(1): 112.
[22] CHEN Y, MENG J, GU Z, et al. Bioinspired multiscale wet adhesive surfaces: structures and controlled adhesion[J]. Advanced Functional Materials, 2020, 30(5): 1 905 287.
[23] KANG M, YONG M P, KIM B H, et al. Micro- and nanoscale surface texturing effects on surface friction [J]. Applied Surface Science, 2015, (345): 344-348.
[24] LI X, DENG J, YUE H, et al. Wear performance of electrohydrodynamically atomized WS2 coatings deposited on biomimetic shark-skin textured surfaces[J]. Tribology International, 2019, 134: 240-251.
[25] YUE H, DENG J, GE D, et al. Effect of surface texturing on tribological performance of sliding guideway under boundary lubrication[J]. Journal of Manufacturing Processes, 2019, 47: 172-182.
[26] YIN B, XU B, JIA H, et al. Effects of the array modes of laser-textured micro-dimples on the tribological performance of cylinder liner-piston ring[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2018, 232(7): 871-881.
[27] PARK J, ZHANG S Y, SHE A, et al. All-Glass, Large metalens at visible wavelength using deep ultraviolet projection lithography[J]. Nano Letters, 2019, 19(12): 8 673-8 682.
[28] 陈宝钦. 光刻技术六十年[J]. 激光与光电子学进展, 2022, 59(9): 508-528.
CHEN B Q, Lithography technology during the past six decades [J].Laser & Optoelectronics Progress, 2022, 59(9): 508-528.
[29] 周子逸, 董贤子, 郑美玲. 数字微镜无掩模光刻技术进展及应用[J]. 激光与光电子学进展,2022,59(9):503-517.
ZHOU Z Y, DONG X Z, ZHENG M L. Evolution and application of digital micromirror device based maskless photolithography[J].Laser & Optoelectronics Progress,2022,59(9):503-517.
[30] JING X, WANG K, ZHU R, et al. Design and fabrication of double-layer curved compound eye via two-photon polymerization[J]. IEEE Photonics Technology Letters, 2021, 33(5): 231-234.
[31] LIU Y, ZHAO Y, JIN F, et al. λ/12 super resolution achieved in maskless optical projection nanolithography for efficient cross-scale patterning[J]. Nano letters, 2021, 21(9): 3 915-3 921.
[32] WANG Z, NANDYALA D, COLOSQUI C E, et al. Glass surface micromachining with simultaneous nanomaterial deposition by picosecond laser for wettability control[J]. Applied Surface Science, 2021, 546: 149 050.
[33] KUMAR D, GURURAJA S, LIEDL G. Formation of sub-wavelength laser induced periodic surface structure and wettability transformation of CFRP laminates using ultra-fast laser[J]. Materials Letters, 2020, 276:128 282.
[34] SONG Y X, WANG C, DONG X R, et al. Controllable superhydrophobic aluminum surfaces with tunable adhesion fabricated by femtosecond laser[J]. Optics and Laser Technology, 2018, 102: 25-31.
[35] CUBERO A, MARTINEZ E, ANGUREL L A, et al. Effects of laser-induced periodic surface structures on the superconducting properties of niobium[J]. Applied Surface Science, 2020, 508: 145 140.
[36] JAMBHULKAR S, XU W, FRANKLIN R, et al. Integrating 3D printing and self-assembly for layered polymer- nanoparticle microstructures as high performance sensors[J]. Journal of Materials Chemistry C, 2020, 8(28): 9 495-9 501.
[37] MENG Z, LI G, YIU S C, et al. Nanoimprint lithography-directed self-assembly of bimetallic Iron-M (M=Palladium, Platinum) complexes for magnetic patterning[J]. Angewandte Chemie-International Edition, 2020, 59(28): 11 521-11 526.
[38] LUO X H, HU Y Q, OU X N, et al. Metasurface-enabled on-chip multiplexed diffractive neural networks in the visible[J]. Light: Science & Applications, 2022, 11(1): 158.
[39] WANG Y J, CHEN Q M, YANG W H, et al. High-efficiency broadband achromatic metalens for near IR biological imaging window[J]. Nature Communications, 2021, 12(1): 5 560.
[40] YANG Y, LI X, CHU M, et al. Electrically assisted 3D printing of nacre-inspired structures with self-sensing capability[J]. Science Advances, 2019, 5(4): 9 490.
[41] JOYEE E B, SZMELTER A, EDDINGTON D, et al. Magnetic field-assisted stereolithography for productions of multimaterial hierarchical surface structures[J]. ACS Applied Materials & Interfaces, 2020, 12(37): 42 357-42 368.
[42] KE C, ZHANG C, JIANG Y. Highly transparent and robust superhydrophobic coatings fabricated via a facile sol-gel process[J]. Thin Solid Films, 2021, 723(1): 138 583.
[43] MAHADIK S A, MAHADIK S S. Surface morphological and topographical analysis of multifunctional superhydrophobic sol-gel coatings[J]. Ceramics International, 2021, 47(20): 29 475-29 482.
[44] SAWADA H, ENDO Y, OIKAWA Y. Preparation and applications of wettability-controlled fluoroalkyl end-capped oligomer/cellulose nanofiber composites[J]. Journal of Composite Materials, 2021, 55(5): 609-623.
文章导航

/