Email Alert  RSS
试验研究

铝表面Ni-SiC-WS2复合镀层的制备及其性能研究

  • 卢鹏军 ,
  • 田晓东 ,
  • 韩宾龙
展开
  • 长安大学材料科学与工程学院 交通铺面材料教育部工程研究中心,陕西西安 710064
田晓东(1980-),博士,副教授,主要研究方向为材料表面耐磨、抗氧化涂层,E-mail: tianxd@chd.edu.cn

收稿日期: 2022-11-22

  修回日期: 2022-12-19

  录用日期: 2023-01-15

  网络出版日期: 2023-07-14

基金资助

长安大学校级大学生创新创业训练项目(X202210710586);长安大学中央高校基本科研业务费专项资金资助(300102311403)

Preparation and Performance Research of Ni-SiC-WS2 Composite Coatings on Aluminum Surface

  • LU Peng-jun ,
  • TIAN Xiao-dong ,
  • HAN Bin-long
Expand
  • Engineering Research Center of Transportation Materials of Ministry of Education, School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China

Received date: 2022-11-22

  Revised date: 2022-12-19

  Accepted date: 2023-01-15

  Online published: 2023-07-14

摘要

为了探究SiC和WS2微粒的共沉积对Ni镀层的组织结构、耐磨性与耐蚀性的影响,在1060铝表面制备纯Ni镀层、Ni-SiC和Ni-SiC-WS2复合镀层,利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、能谱仪(EDS)、显微硬度计、球盘磨损机以及电化学工作站对镀层的表面、截面形貌、相组成、元素含量、显微硬度进行检测与分析,对比了纯Ni镀层、Ni-SiC和Ni-SiC-WS2复合镀层的耐磨与耐蚀性能。结果表明:Ni-SiC-WS2复合镀层平整致密,镀层中SiC和WS2的质量分数分别为7.05 %和2.53 %,这导致其镍晶粒尺寸比纯Ni镀层和Ni-SiC复合镀层分别减小63.39%和21.63%。Ni-SiC-WS2复合镀层的显微硬度最高可达424.73 HV0.5 N,比纯Ni镀层和Ni-SiC复合镀层分别提高57.70%和20.46%;镀层中的WS2微粒有良好的减摩作用,使得Ni-SiC-WS2复合镀层的摩擦系数较Ni-SiC复合镀层进一步降低17.39%,且磨损率降低24.62%;Ni-SiC-WS2复合镀层的自腐蚀电流密度最小,为4.68 μA/cm2,相比于纯Ni镀层和Ni-SiC复合镀层分别减少53.85%和11.36%;Ni-SiC-WS2复合镀层具有更高的阻抗值,为112 361 Ω·cm2,与Ni镀层和Ni-SiC复合镀层相比,Ni-SiC-WS2复合镀层表现出更好的耐腐蚀性能。

本文引用格式

卢鹏军 , 田晓东 , 韩宾龙 . 铝表面Ni-SiC-WS2复合镀层的制备及其性能研究[J]. 材料保护, 2023 , 56(5) : 83 -88 . DOI: 10.16577/j.issn.1001-1560.2023.0110

Abstract

In order to investigate the effects of co-deposition of SiC and WS2 particles on the microstructure, wear resistance and corrosion resistance of Ni coatings, the pure Ni coating, the Ni-SiC composite coating and Ni-SiC-WS2 composite coating were prepared on the surface of 1060 aluminum. Scanning electron microscopy (SEM), X-ray diffractometer (XRD), energy dispersive spectroscopy (EDS) and microhardness tester, friction and ball disc wear tester and electrochemical workstation were used to detect and analyze the surface and cross section morphology, phase composition, elemental contents and microhardness of the coatings, and the wear resistance and corrosion resistance of the pure Ni, Ni-SiC and Ni-SiC-WS2 composite coatings were compared. Results showed that the Ni-SiC-WS2 composite coating was flat and compact, with a mass fraction of 7.05% (mass fraction, the same below) and 2.53% for SiC and WS2, respectively. This resulted in the reduction of nickel grain size by 63.39% and 21.63%, compared with the pure Ni coating and the Ni-SiC composite coating, respectively. The microhardness of Ni-SiC-WS2 composite coating was up to 424.73 HV0.5 N, which was 57.70% and 20.46% higher than that of the pure Ni coating and the Ni-SiC composite coating, respectively. WS2 particles in the coating had good antifriction effect, which made the friction coefficient of the Ni-SiC-WS2 composite coating further reduced by 17.39% compared to Ni-SiC composite coating, and wear rate reduced by 24.62%. The self-corrosion current density of Ni-SiC-WS2 composite coating was the lowest, at 4.68 μA/cm2, which was reduced by 53.85% and 11.36%, compared with the pure Ni coating and the Ni-SiC composite coating, respectively. The Ni-SiC-WS2 composite coating had higher impedance value of 112 361 Ω·cm2, which demonstrated better corrosion resistance than the Ni coating and the Ni-SiC composite coating.

参考文献

[1] 夏 扬, 王吉会, 王茂范. 铝合金电镀的研究进展[J]. 材料导报, 2005, 19(12): 60-63.
XIA Y, WANG J H, WANG M F. Advances in Electroplating of Aluminum Alloy[J]. Materials Reports, 2005, 19(12): 60-63.
[2] 苌清华, 陈春梅, 孟 龙, 等. 电流密度对铝合金表面电镀Ni-SiC的影响[J]. 轻合金加工技术, 2011, 39(1): 43-46.
CHANG Q H, CHEN C M, MENG L, et al. Effect of Current Density to Ni-SiC Electroplating of Aluminum Alloy[J]. Light Alloy Fabrication Technology, 2011, 39(1): 43-46.
[3] TEMAM H B, CHALA A, RAHMANE S. Microhardness and Corrosion Behavior of Ni-SiC Electrodeposited Coatingsin Presence of Organic Additives[J]. Surface and Coatings Technology, 2011, 205(19): 161-164.
[4] 陈居田, 费敬银, 史芳芳, 等. 快速电沉积Al2O3/Ni复合镀层工艺及性能研究[J]. 腐蚀科学与防护技术, 2016, 28(1): 58-62.
CHEN J T, FEI J Y, SHI F F, et al. Fast Electrodeposition of Al2O3/Ni Composite Coatings[J]. Corrosion Science and Protection Technology, 2016, 28(1): 58-62.
[5] 周 阳, 金 秋, 龚小玲, 等. Ni-金刚石复合涂层的结构优化及基础磨削性能[J]. 材料导报, 2017, 31(20): 35-38.
ZHOU Y, JIN Q, GONG X L,et al. Structure Optimization and Basic Grinding Performance of Nickel-diamond Composite Coating[J]. Materials Reports, 2017, 31(20): 35-38.
[6] HE Y, WANG S C, WALSH F C, et al. Self-lubricating Ni-P-MoS2 Composite Coatings[J]. Surface and Coatings Technology, 2016, 307: 926-934.
[7] REDLICH M, GORODNEV A, FELDMAN Y, et al. Friction Reduction and Wear Resistance of Electro-co-deposited Inorganic Fullerene-like WS2 Coating for Improved Stainless Steel Orthodontic Wires[J]. Journal of Materials Research, 2008, 23(11): 2 909-2 915.
[8] SUN W, ZHANG P, ZHAO K, et al. Effect of Graphite Concentration on the Friction and Wear of Ni-Al2O3/Graphite Composite Coatings by a Combination of Electrophoresis and Electrodeposition[J]. Wear, 2015, 342-343: 172-180.
[9] 王 斌. 汽车半轴用钢电沉积Ni-SiC复合镀层的耐磨性[J]. 电镀与环保, 2018, 38(4): 7-10.
WANG B. Wear Resistance of Ni-SiC Composite Coatings Electrodeposited on the Steel Used for Automotive Half Shaft[J]. Electroplating & Pollution Control, 2018, 38(4): 7-10.
[10] 庞加茂. 双阳极复合电镀层Ni-SiC活塞环制备技术[D]. 大连: 大连海事大学, 2019.
PANG J M. Preparation Technology of Double Anode Composite Electroplated Ni-SiC Piston Rings[D]. Dalian: Dalian Maritime University, 2019.
[11] 孟凡科, 艾东斌, 张鸿领, 等. Ni-SiC复合电镀技术在摩托车铝合金缸体上的应用研究[J]. 摩托车技术, 2008(4): 30-33.
MENG F K, AI D B, ZHANG H L, et al. The Research of Ni-SiC Composite Plating to Motorcycle Aluminium Cylinder Block[J]. Motorcycle Technology, 2008(4): 30-33.
[12] VAEZI M R, SADRNEZHAAD S K, NIKZAD L. Electrodeposition of Ni-SiC Nano-composite Coatings and Evaluationof Wear and Corrosion Resistance and Electroplating Characteristics[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2008, 315(1): 176-182.
[13] JIANG W, SHEN L, QIU M B, et al. Preparation of Ni-SiC Composite Coatings by Magnetic Field-enhanced Jet Electrodeposition[J]. Journal of Alloys and Compounds, 2018, 762: 115-124.
[14] DAS A K. Pulse Current Co-deposition of Ni-WS2 Nano-composite Film for Solid Lubrication[J]. Materials & Manufacturing Processes, 2016, 32(4): 365-372.
[15] SAINI R, ROY D, DAS A K, et al. Tribological Behaviour and Characterisation of Ni-WS2 Composite Coating[J]. International Journal of Surface Science and Engineering, 2016, 10(3): 240-252.
[16] HE Y, SUN W T, WANG S C, et al. An Electrodeposited Ni-P-WS2 Coating with Combined Super-hydrophobicity and Self-lubricating Properties[J]. Electrochimica Acta, 2017, 245: 872-882.
[17] SIVANDIPOOR I, ASHRAFIZADEH F. Synthesis and Tribological Behaviour of Electroless Ni-P-WS2 Composite Coatings[J]. Applied Surface Science, 2012, 263: 314-319.
[18] HOU S X, GAO H, JIA X M. Research on Friction Property of WS2 Matrix Solid Lubricating Coatings[J]. Lubrication Engineering, 2013, 38(4): 82-86.
[19] 魏广宁, 高二龙, 丁振国, 等. 石墨烯粒径对Ni-Co-石墨烯复合镀层性能的影响[J]. 稀有金属材料与工程, 2021, 50(5): 1 735-1 742.
WEI G N, GAO E L, DING Z G, et al. Effects of Graphene Particle Size on Properties of Ni-Co-Graphene Composite Coatings[J]. Rare Metal Materialsand Engineering, 2021, 50(5): 1 735-1 742.
[20] DEHGAHI S, AMINI R, ALIZADEH M. Corrosion, Passivation and Wear Behaviors of Electrodeposited Ni-Al2O3-SiC Nano-composite Coatings[J]. Surface and Coatings Technology, 2016, 304: 502-511.
文章导航

/