In terms of the fatigue fracture problems of Zr-Mo titanium alloy (0.6Zr3Mo) oil well pipe caused by working environment during service, the fatigue properties of titanium alloy under different concentrations of hydrofluoric acid and laboratory conditions were investigated and compared by stress loading. Results showed that under the action of 70%σs stress amplitude, titanium alloys exhibited cyclic softening characteristics in both corrosive and non-corrosive environments. The hydrofluoric acid solution promoted the nucleation of fatigue cracks in titanium alloys and accelerated the propagation rate of fatigue cracks, which shortened the fatigue life of titanium alloys, and the fatigue life showed a decreasing trend with the increase of corrosion solution concentration. Meanwhile, the concentration of hydrofluoric acid had a certain impact on the crack propagation mode of titanium alloys, and in laboratory environments, the crack propagation of titanium alloys was mainly characterized by periodic cleavage. In low concentration hydrofluoric acid environments, secondary cracks formed by hydrofluoric acid corrosion could easily induce the formation of cleavage surfaces, and the crack propagation still propagated in a cleavage manner. In high concentration hydrofluoric acid environments, the propagation mode of cracks had changed with an increase in the degree of crack propagation in the ductile zone and a decrease in the degree of crack propagation in the form of cleavage.
[1] 盛 利. 低渗透油田酸化改造技术研究及在莫里青油田的应用[D].长春:吉林大学,2016.
SHENG L. Research on Acidizing transformation technology of low permeability oilfield and its application in Moliqing Oilfield [D]. Changchun: Jilin University,2016.
[2] KUME N, VAN MELSEN R,董世宏,等.一种新的氢氟酸体系提高砂岩基岩的酸化效果[J].国外油田工程,2000(10):23-32.
KUME N, VAN MELSEN R,DONG S H,et al. A New Hydrofluoric Acid System Improve the Acidification Effect of Sandstone Bedrocks[J].Foreign Oilfield Engineering,2000(10):23-32.
[3] 李鹤林.油井管发展动向及若干热点问题(下)[J].钢管,2006(1):1-6.
LI H L. Development trend of O.C.T.G. and related topics of general interest(Part Ⅱ)[J]. Steel Pipe,2006(1): 1-6.
[4] 李鹤林.油井管发展动向及若干热点问题(上)[J].钢管,2005(6):1-6.
LI H L. Development trend of O.C.T.G. and related topics of general interest(Part Ⅱ)[J]. Steel Pipe,2005(6):1-6.
[5] 何涌杰. 高强度抽油杆在高含水工况下的腐蚀疲劳行为研究[D].青岛:中国石油大学(华东),2017.
HE Y J. Research on corrosion fatigue behavior of high strength sucker rod under high water cut condition [D]. Qingdao: China University of Petroleum (East China),2017.
[6] 许爱军,万海峰,梁春祖,等.低温钛合金材料应用现状及发展趋势[J].精密成形工程,2020,12(6):145-156.
XU A J, WAN H F, LIANG C Z, et al. Application Status and Development Trend of Cryogenic Titanium Alloy [J]. Precision Forming Engineering,2020,12(6):145-156.
[7] 任丽宏,徐 英.钛合金3D打印技术在汽车发动机零部件制作中的应用[J].内燃机与配件,2021(2):213-214.
REN L H, XU Y. Application of Titanium Alloy 3D Printing Technology in Automobile Engine Parts Manufacturing [J]. Chinese Internal Combustion Engine and Parts,2021(2):213-214.
[8] 黄晓艳,刘 波,李 雪.钛合金在军事上的应用[J].轻金属,2005(9):51-53.
HUANG X Y, LIU B, LI X. The Application of Titanium Alloy in Military [J]. Light Metals,2005(9):51-53.
[9] 李立鑫,张丰琰,张恒春,等.深井复合钻柱技术在特深科学钻探中的应用探讨[J].中国地质,2019,46(5):1 200-1 208.
LI L X, ZHANG F Y, ZHANG H C, et al. A discussion on deep-well combined drill string technology for ultra-deep drilling engineering [J]. Geology in China,2019,46(5):1 200-1 208.
[10] YIN JG, WU Y S, LU J, et al. Study on electrochemical behavior and SCC susceptibility of TC4 in methanol solution[J]. Rare Metal Materials and Engineering, 2003, 32(6):436-439.
[11] 李松梅,蒋唯沧,刘建华,等.新型航空T-31钛合金导管连接件在模拟服役环境中的抗腐蚀性能研究[J].材料工程,2004(2):32-36.
LI S M, JIANG W C, LIU J H, et al. Study on Corrosion Resistance of Aircraft Conduit Connector of T-31 Titanium Alloy at Simulated Service Environment[J]. Journal of Materials Engineering, 2004(2):32-36.
[12] BIALLAS G, ESSERT M, MAIER H J. Influence of environment on fatigue mechanisms in high-temperature titanium alloy IMI834[J]. International Journal of Fatigue, 2005, 27(10-12), 1 485-1 493.
[13] 王金栓. 钛合金TC17腐蚀行为及其对疲劳寿命的影响[D].厦门:厦门大学,2017.
WANG J S. Corrosion behavior of Titanium Alloy TC17 and its Effect on Fatigue Life [D]. Xiamen: Xiamen University,2017.
[14] 吴达鑫,王利发,叶笃毅,等.TA15合金在3.5%NaCl盐雾下的腐蚀疲劳性能[J].稀有金属材料与工程,2012,41(5):786-789.
WU D X, WANG L F, YE D Y, et al. Investigation on Corrosion Fatigue Properties of TA15 Alloy in 3.5%NaCl Salt Spray [J]. Rare Metal Materials and Engineering,2012,41(5):786-789.
[15] 赵 晴. TC4钛合金腐蚀疲劳性能研究[D].沈阳:沈阳航空航天大学,2018.
ZHAO Q. Study on Corrosion Fatigue Performance of TC4 Titanium Alloy [D]. Shenyang: Shenyang Aerospace University,2018.
[16] 高 兴. TC17钛合金的腐蚀及预腐蚀疲劳性能研究[D].厦门:厦门大学,2019.
GAO X. Study on Corrosion and Precorrosion Fatigue Properties of TC17 titanium Alloy [D]. Xiamen: Xiamen University,2019.
[17] BARAGETTI S. Corrosion fatigue behaviour of Ti-6Al-4V in methanol environment[J]. Surface and Interface Analysis, 2013,45(10):1 654-1 658.
[18] 梁泽芬,张俊喜,易湘斌,等.β/γ三相钛铝合金Ti-43Al-8.5V-Y的应变疲劳性能[J].化工机械,2020,47(1):28-32.
LIANG Z F, ZHANG J X, YI X B, et al. Strain Fatigue Behavior of β/γ Ti-43Al-8.5V-Y Alloy[J]. Chemical Machinery,2020,47(1):28-32.
[19] 陈传尧. 疲劳与断裂[M]. 武汉:华中科技大学出版社, 2002.
CHEN C Y. Fatigue and Fracture [M]. Wuhan: Huazhong University of Science and Technology Press, 2002.
[20] 代 鑫. 核压力容器用大锻件SA508-Ⅳ钢疲劳性能的研究[D].北京:北京科技大学,2021.
DAI X. Research on Fatigue Performance of Heavy forgings SA508-Ⅳ Steel for Nuclear Pressure Vessel [D]. Beijing: University of Science and Technology Beijing,2021.
[21] 张 航,孙洋洋,ALEXANDROV I V,等.高强韧Ti-3Al-5Mo-4Cr-2Zr-1Fe合金低周疲劳性能研究[J].稀有金属材料与工程,2021,50(2):588-594.
ZHANG H, SUN Y Y,ALEXANDROV I V, et al. Study on Low Cycle Fatigue Behavior of Ti-3Al-5Mo-4Cr-2Zr-1Fe Alloy with High Strength and Toughness [J]. Rare Metal Materials and Engineering, 201,50(2):588-594.
[22] 王 玖,林 强,杜发喜,等.TC27钛合金疲劳断裂特性研究[J].热加工工艺,2017,46(24):76-78.
WANG J, LIN Q, DU F X, et al. Study on Fatigue Fracture Performance of TC27 Titanium Alloy [J]. Hot Working Technology,2017,46(24):76-78.
[23] 王 荣. 金属材料的腐蚀疲劳[M]. 西安:西北工业大学出版社, 2001.
WANG R. Corrosion Fatigue of Metal Materials [M]. Xi'an: Northwestern Polytechnical University Press, 2001.
[24] AL-MAYOUF A M, AL-SWAYIH A A, AL-MOBARAK N A, et al. Corrosion behavior of a new titanium alloy for dental implant applications in fluoride media[J]. Materials Chemistry and Physics,2004, 86(2/3), 320-329.
[25] PASCARELLA N L, REYES E A. Passivation of Titanium Alloy with Amino poly carboxylic Acid-Based HF Acid Fluid[M]. Richardson: Society of Petroleum Engineers, 2014.
[26] 薛永强,栾春晖,樊金串.粗糙表面对金属化学腐蚀的影响[J].材料导报,1998(2):23-24.
XUE Y Q, LUAN C H, FAN J C. The Effect of Rough Surfaces on Chemical Corrosions of Metals[J]. Materials Reports,1998(2):23-24.
[27] 周 松,查 涛,黄研清,等.典型高速列车用6N01铝合金焊接接头的微观组织及疲劳性能[J].中国有色金属学报,2021,31(5):1 253-1 260.
ZHOU S, ZHA T, HUANG Y Q, et al. Microstructure and fatigue performance of typical 6N01 aluminum alloy welded joints for high-speed trains [J]. Chinese Journal of Nonferrous Metals, 201,31(5):1 253-1 260.