Email Alert  RSS
综述

喷涂及激光熔覆制备难熔金属涂层的研究现状

  • 崔烺 ,
  • 王守勇 ,
  • 尹飞 ,
  • 冯胜强 ,
  • 刘光 ,
  • 贾利
展开
  • 1.中国兵器科学研究院宁波分院,浙江宁波 315103;
    2.陆军装备部驻南京地区军事代表局驻烟台地区军事代表室,山东烟台 264000
崔 烺(1989-),副研究员,主要研究方向为热/冷喷涂技术,E-mail:cuilxa0410@126.com

收稿日期: 2022-11-27

  修回日期: 2022-12-24

  录用日期: 2023-01-14

  网络出版日期: 2023-07-14

基金资助

宁波市科技创新2025重大专项(2020Z097);宁波市自然科学基金(2019A610173)资助

Research Status of Refractory Metal Coatings Prepared by Spraying and Laser Cladding

  • CUI Lang ,
  • WANG Shou-yong ,
  • YIN Fei ,
  • FENG Sheng-qiang ,
  • LIU Guang ,
  • JIA Li
Expand
  • 1. Ningbo Branch of Chinese Academy of Ordnance Science, Ningbo 315103, China;
    2. Yantai Office of Military Representative Office of the Army Equipment Department in Nanjing, Yantai 264000, China

Received date: 2022-11-27

  Revised date: 2022-12-24

  Accepted date: 2023-01-14

  Online published: 2023-07-14

摘要

钼、钽、钨、铌及其合金等难熔金属具有高熔点、良好的高温性能等特点,在防护领域发挥重大作用,但其成本高,且由于熔点高、导热低、脆性大导致其加工比较困难。通过特定工艺在基体表面制备难熔金属涂层,可以在不改变基体性能的基础上使其具有难熔金属优良的力学性能、高温性能,且能够有效降低制造成本,对于装备表面防护具有重大的研究价值。鉴于难熔金属涂层在制造业中发挥着越来越重要的作用,首先介绍了钼、钽、钨、铌等难熔金属涂层的等离子喷涂、爆炸喷涂、激光熔覆及冷喷涂制备技术,总结了各工艺特点。在此基础上,分析对比了不同工艺制备难熔金属涂层的微观组织及性能,归纳了从涂层材料成分及结构、工艺参数及后处理3个方面做出的改进进展。最后对难熔金属涂层制备技术发展尚存的问题与发展方向进行了展望。

本文引用格式

崔烺 , 王守勇 , 尹飞 , 冯胜强 , 刘光 , 贾利 . 喷涂及激光熔覆制备难熔金属涂层的研究现状[J]. 材料保护, 2023 , 56(5) : 153 -163 . DOI: 10.16577/j.issn.1001-1560.2023.0119

Abstract

Refractory metals such as molybdenum, tantalum, tungsten, niobium and their alloys have the characteristics of high melting point and good high temperature performance, which play a major role in the field of protection. However, due to their high cost, high melting point, low thermal conductivity and high brittleness, their processing is relatively difficult. By using specific processes to prepare refractory metal coatings on the substrate surface to achieve excellent mechanical properties and high-temperature performance of refractory metals without changing the substrate properties, and effectively reduce manufacturing costs, which has significant research value for equipment surface protection. Because the refractory metal coatings play an increasingly important role in the manufacturing industry, the plasma spraying, explosive spraying, laser cladding and cold spraying preparation technology of molybdenum, tantalum, tungsten, niobium and other refractory metal coatings were introduced firstly, and the characteristics of each process were summarized. On this basis, the microstructure and properties of refractory metal coatings prepared by different processes were analyzed and compared, and the improvement progress was summarized from three aspects of coating material composition and structure, process parameters and post-treatment. Finally, the existing problems and development directions of the refractory metal coating preparation technology were prospected.

参考文献

[1] 丁红瑜, 尹衍军, 关杰仁,等. 难熔金属增材制造研究进展[J]. 稀有金属材料与工程, 2021, 50(6): 2 237-2 243.
DING H Y, YI Y J, GUAN R J, et al.Research progress on additive manufactured refractory metals[J]. Rare Metal Materials and Engineering, 2021, 50(6):2 237-2 243.
[2] 蔡圳阳, 沈鸿泰, 刘赛男, 等. 难熔金属合金及其高温抗氧化涂层研究现状与展望[J].中国有色金属学报, 2020, 30(9): 1 991-2 010.
CAI Z Y, SHEN H T, LIU S N, et al. Review and prospect of refractorymetal alloys and high temperature oxidation resistance coatings[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(9): 1 991-2 010.
[3] 殷为宏, 汤慧萍. 难熔金属材料与工程应用[M]. 北京:冶金工业出版社, 2012.
YIN W H, YANG H P. Refractory metal materials and engineering applications[M]. Beijing: Metallurgical Industry Press, 2012.
[4] 郭玉琴, 朱新峰, 杨 艳, 等. 汽车轻量化材料及制造工艺研究现状[J]. 锻压技术, 2015,40(3): 1-6.
GUO Y Q, ZHU X F, YANG Y, et al. Research state of lightweight material and manufacture processes in automotive industry[J]. Foring & Stamping Technology, 2015, 40(3): 1-6.
[5] 韩雪莹, 刘新利, 吴壮志. 含难熔金属涂层的研究进展[J]. 材料导报, 2020, 34(13): 13 146-13 154.
HAN X Y, LIU X L, WU Z Z. Research progress in refractory metal coatings[J]. Materials Reports, 2020, 34(13): 13 146-13 154.
[6] FAUCHAIS P, MONTAVON G. Plasma spraying: from plasma generation to coating structure[J]. Advances in Heat Transfer, 2007, 40: 205-344.
[7] HWANG B, AHN J, LEE S. Effects of blending elements on wear resistance of plasma-sprayed molybdenum blend coatings used for automotive synchronizer rings[J]. Surface and Coatings Technology, 2005, 194(2/3): 256-264.
[8] CHONG F, CHEN J L. Property comparison of vacuum and air plasma sprayed tungsten coatings[J]. Journal of Alloys and Compounds, 2021, 861:158 422.
[9] 丁 玎. 骨植入体表面钽基涂层的制备和生物学性能研究[D]. 北京:中国科学院大学, 2018.
DING D. Preparation and biological properties of tantalum based coatings on bone implant[D]. Beijing: University of Chinese Academy of Sciences, 2018.
[10] CUI J, XIA H Y, CUI L,et al. Effect of Auxiliary Gas Flow Parameters on Microstructure and Properties of Ta Coatings Prepared by Three-Cathode Atmosphere Plasma Spraying[J]. Journal of Beijing Institute of Technology, 2022, 31(3): 302-316.
[11] 刘 光, 张啸寒, 贾 利, 等. 等离子喷涂Mo/8YSZ功能梯度热障涂层结构优化与热力耦合模拟计算[J]. 表面技术, 2002, 49(3): 213-223.
LIU G, ZHANG X H, JIA L, et al. Structural optimization and thermo-mechanical coupling simulation of plasma sprayed Mo/8YSZ functionally graded thermal barrier coating[J]. Surface Technology, 2020, 49(3):213-223.
[12] 庞 铭, 张啸寒, 刘 光. 喷枪扫描速度对等离子喷涂Mo/8YSZ梯度热障涂层温度场的影响规律研究[J]. 表面技术, 2019, 48(9): 193-203.
PANG M, ZHANG X H, LIU G. Effects of scanning speed of spraying gun on temperature field of Mo/8YSZ gradient thermal barrier coatings by plasma spraying[J]. Surface Technology, 2019, 48(9):193-203.
[13] POORMAN R M, SARGENT H B, HEADLEE L. Method and apparatus utilizing detonation waves for spraying and other purposes: 2714563[P]. 1955-08-02.
[14] ULIANITSKY V Y, BATRAEV I S, SHTERTSER A A, et al. Detonation spraying behaviour of refractory metals: Case studies for Mo and Ta-based powders[J]. Advanced Powder Technology, 2018, 29(8): 1 859-1 864.
[15] WANG X L, HE M J, GUO Z X, et al. Preliminary studies on the main characteristics and transient heat shock performances of detonation sprayed tungsten coatings on 316 L steel substrates[J]. Surface and Coatings Technology, 2022, 429: 127 946.
[16] RYBIN D K, BATRAEV I S, DUDINA D V, et al. Deposition of tungsten coatings by detonation spraying[J]. Surface and Coatings Technology, 2021, 409: 126 943.
[17] 李嘉宁. 激光熔覆技术及应用[M]. 北京: 化学工业出版社,2016.
LI J N. Laser cladding technology and application[M]. Beijing: Chemical Industry Press, 2016.
[18] 丁睿谦, 杨英丽, 吴金平,等. TA2钛合金表面激光熔覆金属钽探索实验研究[J]. 稀有金属与硬质合金, 2017, 45(3): 36-40.
DING R Q, YANG Y L, WU J P, et al. Exploration experimental research on laser cladding of Ta coat on TA2 titanium alloy surface[J]. Rare Metals and Cemented Carbides, 2017, 45(3): 36-40.
[19] GUAN W M, GAO M Y, FANG Y T, et al. Layer-by-layer laser cladding of crack-free Zr/Nb/Cu composite cathode with excellent arc discharge homogeneity[J]. Surface and Coatings Technology, 2022, 444: 128 653.
[20] SU H, XIAO L R, TU X X, et al. Preparation and high temperature properties of Nb/Y2O3 coating on the pure Nb substrate by laser cladding[J]. Surface and Coatings Technology, 2022, 447: 128 811.
[21] KLINKOV S V, KOSAREV V F, REIN M. Cold spray deposition: Significance of particle impact phenomena[J]. Aerospace Science and Technology, 2005, 9(7): 582-591.
[22] LI W Y, CAO C C, WANG G, et al. ‘Cold spray+'as a new hybrid additive manufacturing technology: a literature review[J]. Science and Technology of Welding and Joining, 2019, 24(5): 420-445.
[23] KUMAR S, DHAVALE A S, CHAVAN N M, et al. Superconducting niobium coating deposited using cold spray[J]. Materials Letters, 2022, 312: 131 715.
[24] JAFARLOU D M, SOUSA B C, Gleason M A, et al. Solid-state additive manufacturing of tantalum using high-pressure cold gas-dynamic spray[J]. Additive Manufacturing, 2021, 47: 102 243.
[25] BARNETT B, TREXLER M, CHAMPAGNE V. Cold sprayed refractory metals for chrome reduction in gun barrel liners[J]. International Journal of Refractory Metals and Hard Materials, 2015, 53: 139-143.
[26] 崔 烺,王春婷,贾 利,等.冷喷涂Ta涂层组织及腐蚀性能[J].材料热处理学报, 2021, 42(2): 139-144.
CUI L, WANG C T, JIA L, et al. Structure and corrosion properties of Ta coating prepared by cold spraying[J]. Transactions of Materials and Heat Treatment,2021, 42(2): 139-144.
[27] KASERER L, BRAUN J, STAJKOVIC J, et al. Fully dense and crack free molybdenum manufactured by selective laser melting through alloying with carbon[J]. International Journal of Refractory Metals and Hard Materials, 2019, 84: 105 000.
[28] XI H H, HE P F, MA G Z, et al. Microstructure and mechanical properties of supersonic plasma sprayed Mo-based coating reinforced by Re[J]. Surface and Coatings Technology, 2019, 378:124 966.
[29] LEE Y J, SUNG H M, JIN Y, et al. Improvement of mechanical property of air plasma sprayed tungsten film using pulsed electric current treatment[J]. International Journal of Refractory Metals and Hard Materials, 2016, 60: 99-103.
[30] HUANG J J, LI X J, CHEN J, et al. Vacuum annealing enhances the properties of a tungsten coating deposited on copper by atmospheric plasma spray[J]. Journal of Nuclear Materials, 2013, 432(1-3): 16-19.
[31] HOU Q Y, HUANG H Q, ZHOU D H, et al. Influence of NbC-doping on the microstructure and thermo-mechanical properties of tungsten coating fabricated by supersonic atmospheric plasma spraying[J]. Surface and Coatings Technology, 2020, 394: 125 823.
[32] MRDAK M, VENCL A, Ćosić M. Microstructure and mechanical properties of the Mo-NiCrBSi coating deposited by atmospheric plasma spraying[J]. Fme Transactions, 2009, 37(1):27-32.
[33] SAMPATH S, WAYNE S F. Microstructure and properties of plasma-sprayed Mo-Mo2C composites[J]. Journal of Thermal Spray Technology, 1994, 3(3): 282-288.
[34] PETROVSKIY P, DOUBENSKAIA M, SOVA A, et al. Analysis of copper-tungsten cold spray coating: Kinetics of coating formation and its thermal properties[J]. Surface and Coatings Technology, 2020, 385: 125 376.
[35] DENG N,TANG J R, XIONG T Y, et al. Fabrication and characterization of W-Cu composite coatings with different W contents by cold spraying[J]. Surface and Coatings Technology, 2019, 368: 8-14.
[36] NG K W, MAN H C, CHENG F T, et al. Laser cladding of copper with molybdenum for wear resistance enhancement in electrical contacts[J]. Applied Surface Science, 2007, 253(14): 6 236-6 241.
[37] WANG X L, HE M J, GUO Z X, et al. Preliminary studies on detonation sprayed W/W-steel composite coating materials on steel substrates for the first wall of blanket[J]. Surface and Coatings Technology, 2022, 444: 128 693.
[38] WANG T G, CHEN J L, CHEN Y, et al. Thermal properties of VPS-W coatings on CuCrZr alloy with Ti bonding layer[J]. Journal of Nuclear Materials, 2007, 363: 1 294-1 298.
[39] 种法力, 陈俊凌, 郑学斌. 铜基体上等离子体喷涂钨涂层性能研究[J]. 特种铸造及有色合金, 2011, 31(2): 110-112.
ZHONG F L, CHEN J L, ZHENG X B. Properties of plasma sprayed tungsten coatings on copper substrate[J]. Special Casting & Nonferrous Alloys, 2011, 31(2): 110-112.
[40] DING D,XIE Y, LI K, et al. A comparative study on vacuum and atmospheric plasma sprayed tantalum coatings for the modification of titanium implants[J]. Surface Review and Letters, 2019, 26(8): 1 950 048.
[41] XI H H, HE P F, WANG H D, et al. Microstructure and mechanical properties of Mo coating deposited by supersonic plasma spraying[J]. International Journal of Refractory Metals and Hard Materials, 2019, 86:105 095.
[42] MOON S Y, CHOI C H, KIM H S, et al. Thick tungsten coating on ferritic-martensitic steel applied with a vacuum plasma spray coating method[J]. Surface and Coatings Technology, 2015, 280: 225-231.
[43] YAN J, LIU L, MAO Z, et al. Coating prepared by air plasma spraying[J]. Journal of Thermal Spray Technology, 2014, 23(6):934-939.
[44] DAS P, PAUL S, BANDYOPADHYAY P P . Tribological behaviour of plasma sprayed diamond reinforced molybdenum coatings[J]. International Journal of Refractory Metals and Hard Materials, 2019, 78:350-359.
[45] YAN J H, HE Z Y, WANG Y, et al. Microstructure and wear resistance of plasma-sprayed molybdenum coating reinforced by MoSi2 particles[J]. Journal of Thermal Spray Technology, 2016, 25(7): 1 322-1 329.
[46] HUANG J J, WANG F, LIU Y, et al. Properties of tungsten coating deposited onto copper by high-speed atmospheric plasma spraying[J]. Journal of Nuclear Materials, 2011, 414(1): 8-11.
[47] 闫 涛, 刘贵民, 吴 行,等. 超音速等离子喷涂Mo-W涂层的力学性能[J]. 中国表面工程, 2017, 30(1): 107-114.
YAN T, LIU G M, WU H, et al. Mechanical properties of Mo-W coatings prepared by supersonic plasma spraying[J]. China Surface Engineering, 2017, 30(1): 107-114.
[48] ZHANG X H, PANG M, LIU G, et al. Effect of auxiliary gas flow parameters on microstructure and properties of Mo coatings prepared by high-energy plasma spraying[J]. Surface and Coatings Technology, 2020, 385: 125 384.
[49] BRAY M, COCKBURN A, O'NEILL W. The laser-assisted cold spray process and deposit characterisation[J]. Surface and Coatings Technology, 2009, 203(19): 2 851-2 857.
[50] JONES M, COCKBURN A, LUPOI R, et al. Solid-state manufacturing of tungsten deposits onto molybdenum substrates with supersonic laser deposition[J]. Materials Letters, 2014, 134: 295-297.
[51] XIE X L, YIN S, RAOELISON R, et al. Al matrix composites fabricated by solid-state cold spray deposition: A critical review[J]. Journal of Materials Science & Technology, 2021, 86: 20-55.
[52] WANG F, LUO G N, HUANG J J, et al. Properties improvement of atmospheric plasma sprayed tungsten coating by annealing[J]. Surface and Coatings Technology, 2019, 358: 276-281.
[53] KUMAR S, VIDYASAGAR V, JYOTHIRMAYI A, et al. Effect of heat treatment on mechanical properties and corrosion performance of cold-sprayed tantalum coatings[J]. Journal of Thermal Spray Technology, 2016, 25(4): 745-756.
[54] PHILIPPS V. Tungsten as material for plasma-facing components in fusion devices[J]. Journal of Nuclear Materials, 2011, 415(1): S2-S9.
[55] 惠 阳,刘贵民,闫 涛,等.滑动频率对超音速等离子喷涂Mo涂层载流摩擦磨损性能的影响[J]. 表面技术, 2019, 48(10): 196-205.
HUI Y, LIU G M, YAN T, et al.Effect of sliding frequency on tribological property of Mo coating deposited by supersonic plasma spraying technique[J]. Surface Technology, 2019, 48(10): 196-205.
[56] 李 英,鲁 放,石志锋,等. 钛基微纳多级结构钽涂层的构建及其表面特征研究[J]. 稀有金属材料与工程, 2016, 45(8): 2 020-2 025.
LI Y, LU F, SHI Z F, et al.Construction and properties of titanium-based micro/nano multi-level tantalum coating[J]. Rare Metal Materials and Engineering, 2016, 45(8): 2 020-2 025.
[57] SINGH B, SING G, SIDHU B S. Analysis of corrosion behaviour and surface properties of plasma-sprayed composite coating of hydroxyapatite-tantalum on biodegradable Mg alloy ZK60[J]. Journal of Composite Materials, 2019, 53(19): 2 661-2 673.
文章导航

/