Email Alert  RSS
综述

合金元素对液相锌流动性的影响

  • 夏昭 ,
  • 孔纲 ,
  • 朱林龙 ,
  • 张哲成 ,
  • 万聪 ,
  • 车淳山 ,
  • 赖德林 ,
  • 万先兰
展开
  • 1.华南理工大学材料科学与工程学院,广东广州 510641;
    2.上海永丰热镀锌有限公司,上海 201107;
    3.中山市华锌工材料科技有限公司,广东中山 528414
赖德林(1989-),博士,副研究员,主要研究方向为金属表面处理与纳米材料制备,电话:15918428099,E-mail: flyaaa01@163.com

收稿日期: 2022-11-27

  修回日期: 2022-12-15

  录用日期: 2023-01-24

  网络出版日期: 2023-07-14

Effect of Alloying Elements on the Fluidity of Liquid-Phase Zinc

  • XIA Zhao ,
  • KONG Gang ,
  • ZHU Lin-long ,
  • ZHANG Zhe-cheng ,
  • WAN Cong ,
  • CHE Chun-shan ,
  • LAI De-lin ,
  • WAN Xian-lan
Expand
  • 1. School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China;
    2. Shanghai Yongfeng Hot Dip Galvanizing Co., Ltd., Shanghai 201107, China;
    3. Zhongshan Hizinco Material Sci& Tech Co., Ltd., Zhongshan 528414, China

Received date: 2022-11-27

  Revised date: 2022-12-15

  Accepted date: 2023-01-24

  Online published: 2023-07-14

摘要

液相锌的流动性不仅直接影响合金的铸造性能,而且还对热浸锌镀层厚度控制有着十分重要的意义。在液相锌中加入各种微量的合金元素可以提高流动性,从而改善热浸锌镀层的镀覆效果和表面质量,也能提高液相锌的压铸填充性能。为此,主要综述了用于热浸锌的常见合金元素(Pb、Bi、Sn、Sb、Al、Mg、RE、Ni)以及部分用于压铸锌合金的合金元素(Al、Mg)对液相锌流动性的影响。

本文引用格式

夏昭 , 孔纲 , 朱林龙 , 张哲成 , 万聪 , 车淳山 , 赖德林 , 万先兰 . 合金元素对液相锌流动性的影响[J]. 材料保护, 2023 , 56(5) : 164 -172 . DOI: 10.16577/j.issn.1001-1560.2023.0120

Abstract

The fluidity of liquid-phase zinc not only directly influences the casting properties of the alloy but also has a very important significance for the control of hot-dip galvanized coating thickness. The addition of various trace alloying elements to liquid-phase zinc can improve the fluidity, hence improving the coating effectiveness and surface quality of hot-dip zinc coatings, as well as improving the die-casting filling properties of liquid-phase zinc. In this paper, the influences of common alloying elements (Pb, Bi, Sn, Sb, Al, Mg, RE, Ni) used in hot-dip zinc and some alloying elements (Al, Mg) used in die-cast zinc alloys on liquid-phase zinc fluidity were reviewed.

参考文献

[1] HAN Q, ZHANG J. Fluidity of Alloys Under High-Pressure Die Casting Conditions: Flow-Choking Mechanisms[J]. Metallurgical and Materials Transactions B, 2020, 51(4): 1 795-1 804.
[2] RAGONE D V, ADAMS C M, TAYLOR H F. A new method for determining the effect of solidification range on fluidity[J]. Trans AFS, 1956, 64: 653-657.
[3] 王忠民, 张忠诚, 刘青桂, 等. Fe3Al合金的流动性及热力学分析[J]. 铸造技术, 2006,27(2):150-152.
WANG Z M, ZHANG Z C, LIU Q G, et al. Fluidity and thermodynamic analysis of Fe3Al alloy[J]. Casting Technology, 2006,27(2):150-152.
[4] DAENEKE T, KHOSHMANESH K, MAHMOOD N, et al. Liquid metals: fundamentals and applications in chemistry[J]. Chemical Society Reviews, 2018, 47(11): 4 073-4 111.
[5] POLA A, TOCCI M, GOODWIN F E. Review of Microstructures and Properties of Zinc Alloys[J]. Metals, 2020, 10(2): 253.
[6] 胡城立, 朱 敏. 材料成型基础 [M]. 武汉: 武汉理工大学出版社, 2001.
HU C L, ZHU M. Material forming basis [M]. Wuhan: Wuhan University of Technology Press, 2001.
[7] 胡亚民. 材料成形技术基础 [M]. 重庆: 重庆大学出版社, 2000.
HU Y M. The basis of material forming technology [M]. Chongqing: Chongqing University Press, 2000.
[8] RAVI K, PILLAI R, AMARANATHAN K, et al. Fluidity of aluminum alloys and composites: A review[J]. Journal of Alloys and Compounds, 2008, 456(1/2): 201-210.
[9] PORTER F C. Zinc handbook: properties, processing, and use in design [M]. Boca Raton: Crc Press, 1991:545-569.
[10] FASOYINU F A, WEINBERG F. Spangle formation in galvanized sheet steel coatings[J]. Metallurgical and Materials Transactions B, 1990, 21(3): 549-558.
[11] STRUTZENBERGER J, FADERL J. Solidification and spangle formation of hot-dip-galvanized zinc coatings[J]. Metallurgical and Materials Transactions A, 1998, 29(2): 631-646.
[12] MAINIER F B, SEMAAN F S, SARMENTO T P, et al. Lead and Cadmium Distribution in Tubes of Galvanized Steel by Hot-Dip Used for Drinking Water Supply[J]. Journal of Civil Engineering and Architecture, 2020, 14: 271-279.
[13] VALA U. Effect of lead on hot dip galvanized steel as barrier/Sacrificial Coating[J]. Metallurgy, 2002, 24: 150-155.
[14] KREPSKI R. The influence of lead in after-fabrication hot dip galvanizing: 14 th International Galvanizing Conference [C]. London: Zinc Development Association, 1985: 6-11.
[15] KANIA H, SATERNUS M, Kudláček J. Structural aspects of decreasing the corrosion resistance of zinc coating obtained in baths with Al, Ni, and Pb additives[J]. Materials, 2020, 13(2): 385-399.
[16] Królikowska A, KOMOROWSKI L, BONORA P L. Pitting Corrosion of Hot-Dip Galvanized Coatings[J]. Materials, 2020, 13(9): 2 031-2 045.
[17] BEGUIN P,BOSSCHAERTS M,DHAUSSY D, et al. GALVECO: a solution for galvanizing reactive steel[J]. Bulletin of the Bismuth Institute(Belgium), 2000, 76: 1-4.
[18] SEBISTY J, PALMER R. Hot dip galvanizing with less common bath additions: Proceedings of the 7th International Conference on Hot Dip Galvanizing[C]. Paris: ILZRO, 1967: 117-120.
[19] ASTM A653, Standard Specification for Steel Sheet[S].
[20] PASWAN S, SINGH J K, SINGH D. Effect of lead alloying on corrosion characteristics of galvanized coatings exposed in atmosphere, simulated laboratory and a service environment[J]. Surfaces and Interfaces, 2020, 21: 100 752.
[21] MOELANS N, KUMAR K H, WOLLANTS P. Thermodynamic optimization of the lead-free solder system Bi-In-Sn-Zn[J]. Journal of Alloys and Compounds, 2003, 360(1/2): 98-106.
[22] TAMARA R, Potecas,u F. Influence of Alloying Elements in Zinc Melts on the Structure of Layers Obtained by Galvanizing[J]. The Annals of “Dunarea de Jos” University of Galati Fascicle IX, Metallurgy and Materials Science, 2018, 41(4): 10-14.
[23] FRATESI R, RUFFINI N, MALAVOLTA M, et al. Contemporary use of Ni and Bi in hot-dip galvanizing[J]. Surface and Coatings Technology, 2002, 157(1): 34-39.
[24] FARAHANY S, TAT L H, HAMZAH E, et al. Microstructure development, phase reaction characteristics and properties of quaternary Zn-0.5Al-0.5Mg-xBi hot dipped coating alloy under slow and fast cooling rates[J]. Surface and Coatings Technology, 2017, 315: 112-122.
[25] GAGNE M. Hot-dip galvanizing with zinc-bismuth alloys[J]. Metall (Berlin, West), 1999, 53(5): 269-271.
[26] PISTOFIDIS N, VOURLIAS G, KONIDARIS S, et al. The effect of bismuth on the structure of zinc hot-dip galvanized coatings[J]. Materials Letters, 2007, 61(4): 994-997.
[27] KANIA H, SATERNUS M, Kudláček J, et al. Microstructure Characterization and Corrosion Resistance of Zinc Coating Obtained in a Zn-AlNiBi Galvanizing Bath[J]. Coatings, 2020, 10(8): 758-773.
[28] KANIA H, MENDALA J, KOZUBA J, et al. Development of Bath Chemical Composition for Batch Hot-Dip Galvanizing—A Review[J]. Materials, 2020, 13(18): 4 168-4 192.
[29] Avettand-Fènoël M, REUMONT G, PERROT P. The effect of tin on the reactivity of silicon-containing steels: Proceedings of the 21st International Galvanizing Conference Intergalva [C]. Galva: 21st International Galvanizing Conference, 2006:1-9.
[30] DI COCCO V, IACOVIELLO F, D'AGOSTINO L, et al. Sn and Ti influence on damage of bent hot-dip galvanizing phases[J]. Procedia Structural Integrity, 2017, 3: 224-230.
[31] KANIA H, SATERNUS M, Kudláček J. Impact of Bi and Sn on Microstructure and Corrosion Resistance of Zinc Coatings Obtained in Zn-AlNi Bath[J]. Materials, 2020, 13(17): 3 788-3 805.
[32] MENDALA J. The possibility of the LME phenomenon in elements subjected to metallization in Zn bath with Bi addition: Solid State Phenomena [C]. Switzerland: Trans Tech Publ, 2015: 167-172.
[33] MENDALA J, LIBERSKI P. Liquid metal embrittlement of steel with a coating obtained by batch hot dip method in a Zn+2%Sn bath: Solid State Phenomena [C]. Switzerland: Trans Tech Publ, 2014: 107-110.
[34] MENDALA J. Liquid metal embrittlement of steel with galvanized coatings[J]. IOP Conference Series: Materials Science and Engineering, 2012, 35: 012 002.
[35] HUCKSHOLD M. Improving design guidance to avoid cracking of galvanized structural steelwork:Proceedings of the 22th International Galvanizing Conference[C]. Madrid: Steel and Galvanizing, 2009: 8-12.
[36] PENG S, XIE S K, LU J T, et al. Surface characteristics and corrosion resistance of spangle on hot-dip galvanized coating[J]. Journal of Alloys and Compounds, 2017, 728: 1 002-1 008.
[37] ZAPPONI M, QUIROGA A, Pérez T. Segregation of alloying elements during the hot-dip coating solidification process[J]. Surface and Coatings Technology, 1999, 122(1): 18-20.
[38] PENG S, LU J, CHE C, et al. Morphology and antimony segregation of spangles on batch hot-dip galvanized coatings[J]. Applied Surface Science, 2010, 256(16): 5 015-5 020.
[39] PAN D, ZHU Z, MA W, et al. The Zn-Rich Corner of the Zn-Al-Ni-Sb Quaternary System at 450 and 600 ℃[J]. Journal of Phase Equilibria and Diffusion, 2019, 40(3): 383-391.
[40] PENG S, XIE S K, XIAO F, et al. Corrosion behavior of spangle on a batch hot-dip galvanized Zn-0.05 Al-0.2 Sb coating in 3.5 wt.% NaCl solution[J]. Corrosion Science, 2020, 163: 108 237.
[41] PENG S, XIE S K, YANG Y M, et al. Aluminum and antimony segregation on a batch hot-dip galvanized Zn-0.05Al-0.2Sb coating[J]. Journal of Alloys and Compounds, 2017, 694: 1 004-1 010.
[42] WANG X, LU J, CHE C. Identification of segregation phase on a batch hot-dip-coated Zn/0.1 Al/0.2Sb surface[J]. Surface and Interface Analysis, 2007, 39(10): 805-808.
[43] Seré P R, CULCASI J D, ELSNER C I, et al. Relationship between texture and corrosion resistance in hot-dip galvanized steel sheets[J]. Surface and Coatings Technology, 1999, 122(2): 143-149.
[44] CHANG S, SHIN J C. The effect of antimony additions on hot dip galvanized coatings[J]. Corrosion Science, 1994, 36(8): 1 425-1 436.
[45] CHANG S, SHIN J. Effect of the zinc bath composition on hot dip galvanized and galvannealed steel sheet: Galvatech 95th Conference Proceedings[C]. Chicago:Iron and Steel Society/AIME(USA), 1995: 783-786.
[46] 贺志荣, 何 应, 刘继拓, 等. Al和RE对Zn-Al合金镀层组织和耐蚀性的影响[J]. 中国有色金属学报, 2014, 24: 2 020-2 025.
HE Z R, HE Y, LIU J T, et al. Effect of Al and RE on microstructure and corrosion resistance of Zn-Al alloy coating[J]. Chinese Journal of Nonferrous Metals, 2014, 24: 2 020-2 025.
[47] 宋 丹. 热浸镀锌基合金液态性能的研究 [D]. 昆明: 昆明理工大学, 2010.
SONG D. Study on liquid properties of hot-dip galvanized alloy [D].Kunming: Kunming University of Technology, 2010.
[48] 何明奕,赵晓军,刘 丽,等. 热浸镀合金液态性能研究: 高性能防腐蚀涂装及表面保护技术的应用与发展——第16届全国表面保护技术交流会论文集[C]. 武汉:湖北省腐蚀与防护学会, 材料保护杂志社, 2011: 64-68.
HE M Y, ZHAO X J, LIU L, et al. Research on liquid properties of hot-dip plated alloy: Application and development of high-performance anti-corrosion coating and surface protection technology — Proceedings of the 16th National Surface Protection Technology Exchange Conference [C].Wuhan: Hubei Corrosion and Protection Society, Material Protection Magazine,2011:64-68.
[49] 于波涛, 何明奕, 王胜民, 等. 热浸镀锌基合金流动性研究及组织分析[J]. 钢铁研究, 2011, 39(2): 30-32.
YU B T, HE M Y, WANG S M, et al. Fluidity study and microstructure analysis of hot-dip galvanized alloy[J]. Iron and Steel Research, 2011, 39(2): 30-32.
[50] 王德懂. 锌浴特征和镀层物化性能的关联性研究 [D]. 昆明: 昆明理工大学, 2019.
WANG D D. Study on the relationship between zinc bath characteristics and physicochemical properties of coating [D].Kunming: Kunming University of Science and Technology, 2019.
[51] 党建伟. 热浸镀锌浴结晶特征、表面张力及流动性的研究 [D]. 昆明: 昆明理工大学, 2017.
DANG J W. Study on crystallization characteristics, surface tension and fluidity of hot-dip galvanized bath [D]. Kunming: Kunming University of Science and Technology, 2017.
[52] 刘 洋. 锌铝合金的组织性能优化及相关基础研究 [D]. 长沙: 中南大学, 2013.
LIU Y. Optimization of microstructure and properties of zinc-aluminum alloy and related basic research [D].Changsha: Central South University, 2013.
[53] MORANDO C, FORNARO O, GARBELLINI O, et al. Fluidity on Metallic Eutectic Alloys[J]. Procedia Materials Science, 2015, 8: 959-967.
[54] FRIEBEL V, ROE W. Fluidity of Zinc-Aluminum Alloy[J]. Modern Castings, 1962, 45(8): 655-672.
[55] GOODWIN F. Development of Thin Section Zinc Die Casting Technology [R]. Norfolk, VA: Advanced Technology Inst, 2013.
[56] GOODWIN F E, KALLIEN C L H, LEIS W. The High Fluidity (HF) Zinc Alloy: Process-Property and Ageing Characteristics[C]. Arlington:North American Die Casting Association, 2015: 1-10.
[57] ZHANG K, FILC A. A New High Fluidity Zinc Die Cast Alloy: SAE 2011 World Congress & Exhibition[C]. Toronto: SAE Technical Paper, 2011: 1-9.
[58] MARDER A R. The metallurgy of zinc-coated steel[J]. Progress in Materials Science, 2000, 45(3): 191-271.
[59] 卢锦堂, 江爱华, 车淳山, 等. 热浸Zn-Al合金镀层的研究进展[J]. 材料保护, 2008(7): 47-51.
LU J T, JIANG A H, CHE C S, et al. Research progress of Hot dip Zn-Al alloy coating[J]. Materials Protection, 2008(7): 47-51.
[60] 蒋冶鑫, 李广龄. Zn-5%Al-RE合金(Galfan)镀层钢丝的开发应用[J]. 金属制品, 2001, 27(2): 4-7.
JIANG Y X, LI G L. Development and Application of Zn-5%Al-RE Alloy (Galfan) Coated steel Wire[J].Metal Products, 2001, 27(2): 4-7.
[61] ROSALBINO F, ANGELINI E, Macciò D, et al. Influence of rare earths addition on the corrosion behaviour of Zn-5%Al (Galfan) alloy in neutral aerated sodium sulphate solution[J]. Electrochimica Acta, 2007, 52(24): 7 107-7 114.
[62] WIT J H W D, MOL J M C, BOS W M, et al. Organic coatings for marine and shipping applications[J]. High-Performance Organic Coatings, 2008(1): 337.
[63] 沈百方, 刘 昕, 沈 阳, 等. 热浸镀新型高耐蚀锌合金镀层的成分设计及试验研究[J]. 材料保护, 2018, 51(3): 72-76.
SHEN B F, LIU X, SHEN Y, et al. Composition design and experimental study of a new zinc alloy coating with high corrosion resistance by hot dip plating[J]. Materials Protection, 2018, 51(3): 72-76.
[64] MEMMI M, GIARDETTI G. Use of 0.1%-0.2% addition of magnesium to zinc for hot dip galvanizing silicon killed steel[J]. 13th International Galvanizing, 1982, 33: 1-6.
[65] 仲海峰, 张启富, 程东妹, 等. Zn-Al-Mg和Zn-Al-Mg-RE合金镀层耐腐蚀性能[J]. 腐蚀与防护, 2011, 32(11): 880-883.
ZHONG H F, ZHANG Q F, CHENG D M, et al. Corrosion Resistance of Zn-Al-Mg and Zn-al-Mg-Re alloy Coatings[J].Corrosion and Protection, 2011, 32(11): 880-883.
[66] 曲家惠, 金 浩, 王 福, 等. 镁对IF钢热镀锌镀层的组织和性能的影响[J]. 腐蚀科学与防护技术, 2008, 20(1): 8-11.
QU J H, JIN H, WANG F, et al. Effect of Magnesium on microstructure and properties of IF steel coating[J]. Corrosion Science and Protection Technology, 2008, 20(1): 8-11.
[67] KOMATSU A, TSUJIMURA T, WATANABE K, et al. Hot-dip Zn-Al-Mg coated steel sheet excellent in corrosion resistance and surface appearance and process for the production thereof: 6235410B1[P]. 2001-05-22.
[68] YU Z, HU J, MENG H. A Review of Recent Developments in Coating Systems for Hot-Dip Galvanized Steel[J]. Frontiers in Materials, 2020(7): 74-93.
[69] CHEN H, YU J, WANG Y, et al. Effects of rare earth addition on the microstructure and properties of low-temperature aluminized coating on oil casing steel N80[J]. Heat Treat Technol Equip, 2015, 36(5): 27-30.
[70] SU F, ZHANG P, WEI D, et al. Corrosion behavior of hot-dip Al-Zn coating doped with Si, RE, and Mg during exposure to sodium chloride containing environments[J]. Materials and Corrosion, 2018, 69(6): 714-724.
[71] MANNA M. Effect of fluxing chemical: An option for Zn-5wt.%Al alloy coating on wire surface by single hot dip process[J]. Surface and Coatings Technology, 2011, 205(12): 3 716-3 721.
[72] MANNA M, DUTTA M, BHAGAT A. Microstructure and Electrochemical Performance Evaluation of Zn, Zn-5 wt.% Al and Zn-20 wt.% Al Alloy Coated Steels[J]. Journal of Materials Engineering and Performance, 2021, 30(1): 627-637.
[73] ZHANG W, LI X Y, LI Q A. The influence of La on the corrosion resistance of hot-dip aluminized steel: Materials Science Forum[C]. Switzerland: Trans Tech Publications Ltd, 2005: 3 851-3 854.
[74] GUO T X, DONG X Q, DENG S H, et al. Influence of rare earth on hot-dipped 55% Al-Zn alloy coating: Advanced Materials Research[C]. Switzerland: Trans Tech Publications Ltd, 2013: 1 132-1 136.
[75] LAI X, PENG H, WANG J, et al. Effect of La on intermetallic layer of galvalume[J]. Surface Engineering, 2013, 29(5): 390-395.
[76] WU G, ZHANG J, LI Q, et al. Microstructure and Thickness of 55 pct Al-Zn-1.6 pct Si-0.2 pct RE hot-dip coatings: experiment, thermodynamic, and first-principles study[J]. Metallurgical and Materials Transactions B, 2012, 43(1): 198-205.
[77] DU J, TU H, PENG H, et al. Phase equilibria of the Al-Si-La system between 0 and 50 at.% La at 600 and 800 ℃[J]. Journal of Alloys and Compounds, 2018, 765: 608-615.
[78] 魏 源,何明奕,王胜民,等. 锌基热镀合金的流动性能分析[J].钢铁研究,2009,37(2):34-36.
WEI Y, HE M Y, WANG S M, et al. Analysis of flow properties of zinc base hot plated alloy[J]. Iron and Steel Research, 2009, 37(2): 34-36.
[79] RADTKE S F, HERRSCHAFT D C. Role of misch metal in galvanizing with a Zn-5%Al alloy[J]. Journal of the Less Common Metals, 1983, 93(2): 253-259.
[80] 吴俊琳, 余仲兴, 朱永达. 微量添加稀土对锌基合金镀层性能的影响[J]. 上海有色金属, 2002(3): 97-102.
WU J L, YU Z X, ZHU Y D. Effect of rare earth addition on properties of zinc base alloy coating[J]. Shanghai Nonferrous Metals, 2002(3): 97-102.
[81] GAO H, TAN J, JU C, et al. Effect of rare earth metals on microstructure and corrosion resistance of Zn-0.18Al coatings[J]. Materials Science and Technology, 2011, 27(1): 71-75.
[82] XU W, WEI L, ZHANG Z, et al. Effects of lanthanum addition on the microstructure and corrosion resistance of galvanized coating[J]. Journal of Alloys and Compounds, 2019, 784: 859-868.
[83] FAN H Q, XU W C, WEI L, et al. Relationship between La and Ce additions on microstructure and corrosion resistance of hot-dip galvanized steel[J]. Journal of Iron and Steel Research International, 2020, 27(9): 1 108-1 116.
[84] JIA H M, FENG X H, YANG Y S. Effect of crystal orientation on corrosion behavior of directionally solidified Mg-4% Zn alloy[J]. Journal of Materials Science & Technology, 2018, 34(7): 1 229-1 235.
[85] JIANG Q, MIAO Q, TONG F, et al. Electrochemical corrosion behavior of arc sprayed Al-Zn-Si-RE coatings on mild steel in 3.5% NaCl solution[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(8): 2 713-2 722.
[86] 卢锦堂,陈锦虹,许乔瑜,等. 热镀锌浴加镍抑制圣德林效应的探讨[J]. 材料保护, 1995, 28(3): 9-12.
LU J T, CHEN J H, XU Q Y, et al. Study on the inhibition effect of nickel in hot dip galvanizing bath[J]. Materials Protection, 1995, 28(3): 9-12.
[87] RUDNIK E, Włoch G, SZATAN L. Preliminary Investigation on Leaching Behavior of Zinc Ash[J]. Archives of Metallurgy and Materials, 2018, 63(2):801-807.
[88] RUDNIK E. Hydrometallurgical recovery of zinc from industrial hot dipping top ash[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(8): 2 239-2 255.
[89] CHATTERJEE B. Chatterjee: Hot Dip Galvanizing Chatterjee: Hot Dip Galvanizing[J].Jahrbuch Oberflachentechnik, 2014, 70: 73-90.
[90] 孔 纲, 卢锦堂, 陈锦虹, 等. 锌浴中元素对钢结构件热镀锌的影响[J]. 表面技术, 2003, 32(4): 7-11.
KONG G, LU J T, CHEN J H, et al. Influence of Elements in Zinc Bath on Hot-dip Galvanizing of Steel Structural Parts[J]. Surface Technology, 2003, 32(4): 7-11.
[91] 邵建新. 一种含0.5%镍的热浸镀锌合金的应用分析[J]. 材料保护, 2006, 39(5): 55-57.
SHAO J X. Application analysis of a kind of hot dip galvanized alloy containing 0.5% nickel[J].Materials Protection, 2006, 39(5): 55-57.
[92] 卢锦堂, 许乔瑜, 陈锦虹, 等. 锌浴中镍含量对热浸锌镀层厚度的影响[J]. 材料保护, 2001, 34(4): 15-16.
LU J T, XU Q Y, CHEN J H, et al.Effect of nickel content in zinc bath on thickness of hot dip zinc coating[J]. Materials Protection, 2001, 34(4): 15-16.
[93] PENG H, XU S, WANG J, et al. The 600 ℃ Isothermal Section of the Al-Ni-Zn Ternary System[J]. Journal of Phase Equilibria and Diffusion, 2017, 38(2): 151-159.
[94] PARMAR J, SHARMA D K, KHYATI P, et al. A Review on Galvanizing Coating Defects: Causes and Remedies[J]. Jurnal Kejuruteraan, 2022, 34(4): 535-542.
[95] GAO H Y, TAN J, JU C, et al. Effect of rare earth metals on microstructure and corrosion resistance of Zn-0.18Al coatings[J]. Materials Science and Technology, 2011, 27(1): 71-75.
[96] IIDA T. Viscosities of Mercury-based Dilute Binary Alloys[J]. The Japan Institute of Metals and Materials, 1973, 37(8): 841-848.
文章导航

/