Email Alert  RSS
试验研究

高铁列车涂层的抗冲蚀破坏机制研究

展开
  • 1中国科学院力学研究所宽域飞行工程科学与应用中心; 2中国科学院大学工程科学学院
高方圆(1984-),博士研究生,副研究员,研究方向为先进功能镀层的设计与研发,电话:010-82545796,E-mail:gaofangyuan@imech.ac.cn;夏 原(1963-),博士研究生,研究员,研究方向为高离化物理气相沉积技术,电话:010-82543858,E-mail:xia@imech.ac.cn

收稿日期: 2023-07-18

  修回日期: 2023-08-15

  录用日期: 2023-09-26

  网络出版日期: 2024-01-08

基金资助

国家重点研发计划资助(2021YFB3500100)

Study on Mechanism of Anti-Erosive Damage in High-Speed Train Coatings

Expand
  • (1. Wide Range Flight Engineering Science and Applications Center, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;2. School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China)

Received date: 2023-07-18

  Revised date: 2023-08-15

  Accepted date: 2023-09-26

  Online published: 2024-01-08

摘要

针对动车组表面涂层在运行过程中受到微细粒子高速冲蚀磨损的问题,采用有限元数值模拟及冲蚀磨损试验系统研究了微细粒子速度、入射角度、粒子尺寸等对涂层冲蚀磨损率的影响规律,分析了聚氨酯涂层的抗冲蚀破坏机制,主要表现为低角度冲蚀时的微切削及高角度冲蚀时的脆性破碎机制。研究结果表明,涂层的冲蚀磨损率随粒子速度呈现幂增长,冲蚀磨损率在粒子速度从70 m/s变为80 m/s 时增幅达87%;涂层在一定程度上呈现韧性材料冲蚀磨损特性,冲蚀磨损率在入射角15°时达到峰值0.94 mm3/g;在不同粒径粒子垂直入射情形下,涂层均表现出脆性材料的破碎脱落冲蚀磨损机制。模拟计算的仿真结果与试验验证误差仅为7%,表明该模型建立与计算方法具有较高的有效性,可用于简化或替代试验手段,为风沙环境下涂层结构的优化提供依据。

本文引用格式

曾明亮, 高方圆, 刘仁, 李光, 夏原 . 高铁列车涂层的抗冲蚀破坏机制研究[J]. 材料保护, 2023 , 56(12) : 96 -104 . DOI: 10.16577/j.issn.1001-1560.2023.0293

Abstract

For the problem of high-speed erosion and wear caused by microfine particles on the surface coatings of rolling stock during operation, the effects of fine particle velocity, incidence angle and particle size on the erosion wear rate of the coatings were conducted using finite element numerical simulation and erosion wear test system. The anti-erosive damage mechanism of polyurethane coatings was analyzed, which was primarily characterized by micro cutting during low angle erosion and brittle fracture mechanism during high angle erosion. Results showed that the erosion wear rate of the coating increased exponentially with particle velocity, which experienced an 87% rise when the velocity changed from 70 m/s to 80 m/s; the coating exhibited characteristics of ductile material erosion wear to a certain extent, with the erosion wear rate reaching a peak value of 0.94 mm3/g at an incidence angle of 15°. Furthermore, the coating exhibited a brittle material crushing and shedding erosion wear mechanism under vertical incidence of different particle sizes. The simulation results obtained from the computational model showed a mere 7% error when compared with experimental validation, indicating that both the model establishment and computational methods possessed high effectiveness. This model could be utilized to simplify or replace experimental approaches, providing a basis for optimizing coating structures in windy and sandy environments.
文章导航

/