Email Alert  RSS
工艺探讨

Ni-nSiO2纳米复合电镀制备钢基超双疏表面探究 

展开
  • 1. 海军大连舰艇学院航海系, 辽宁 大连 116018; 2. 大连理工大学船舶工程学院, 辽宁 大连 116023
蒋文轩(1991-),博士,主要研究方向为低碳钢基超疏水表面制备与形貌定量表征,E-mail:jwx_thealpha@foxmail.com

收稿日期: 2022-07-24

  修回日期: 2022-08-06

  录用日期: 2022-09-21

  网络出版日期: 2023-07-25

Investigation of the Preparation of Steel-Based Superamphiphobic Surface by Ni-nSiO2 Nanocomposite Electroplating

Expand
  • 1. Department of Navigation, Dalian Naval Academy, Dalian 116018, China;2. School of Naval Architecture, Dalian University of Technology, Dalian 116023, China

Received date: 2022-07-24

  Revised date: 2022-08-06

  Accepted date: 2022-09-21

  Online published: 2023-07-25

摘要

为了实现在钢材基体上超双疏表面的制备,同时避免破坏钢基表面的物理性质,基于Ni-nSiO2纳米复合电沉积技术,提出一种在船用Q235 钢材上制备超双疏表面的制备工艺。 首先通过纳米复合电镀以及液相沉积法,在钢基表面构造适合超双疏性能的微纳米双重粗糙度结构,随后用十七氟癸基三甲氧基硅烷进行表面修饰。通过设计三因素正交试验,改变电镀参数(温度、时间、电流)并分析各参数对表面润湿性的影响,得到可以实现超双疏的制备工艺参数。 然后通过扫描电子显微镜对制备的双疏表面的微观形貌进行分析。 研究结果表明:当电流密度为12.5 A/dm2、磁流搅拌速度为200 r/min、电镀时间为50 min、温度为60 ℃时,可制备出与水的接触角为154°、与油的接触角为151°的钢基超双疏表面。 在该参数下,通过复合电沉积过程得到了微纳米粗糙形貌,结合低表面能修饰,使得表面呈现出超双疏的特性。

本文引用格式

程 宏, 韦智元, 王 涌, 蒋文轩 . Ni-nSiO2纳米复合电镀制备钢基超双疏表面探究 [J]. 材料保护, 2023 , 56(1) : 58 -63 . DOI: 10.16577/j.issn.1001-1560.2023.0009

Abstract

In order to realize the preparation of a superamphiphobic surface on the steel substrate and simultaneously avoid damage to the physical properties of the steel substrate surface, a preparation process for preparing superamphiphobic surface on marine Q235 steel was proposed on the basis of Ni-nSiO2 nanocomposite electrodeposition technology. Firstly, a micro-nano double-roughness structure suitable for superamphiphobic properties was constructed on the surface of the steel substrate by nanocomposite electroplating and liquid phase deposition,and then the surface was modified with heptadecafluorodecyl trimethoxysilane. By designing a three - factor orthogonal experiment, the preparation process parameters that could realize superamphiphobic surface were obtained by changing the electroplating parameters (temperature, time, current) and analyzing the influence of each parameter on the surface wettability. Additionally, the microscopic morphology of the as-prepared superamphiphobic surface was analyzed by scanning electron microscopy. Results showed that when the current density was 12.5 A/dm2, the magnetic stirring speed was 200 r/min, the electroplating time was 50 min, and the temperature was 60 ℃, the as-prepared steel-based superamphiphobic surface presented a contact angle of 154° with water and a contact angle of 151° with oil. Under the above parameters, the combination of micro-nano rough morphology obtained through the composite electrodeposition process and low surface energy modification made the surface exhibited superamphiphobic properties.

参考文献

[ 1] 陈美玲, 张力明, 杨 莉,等. 低表面能船舶防污涂料的疏水结构及防污性能[J]. 船舶工程, 2010, 32(6):64-67.CHEN M L, ZHANG L M, YANG L, et al. Hydrophobic structure and antifouling performance of the low surface energy marine coating[J]. Ship Engineering,2010,32(6):64-67.

[ 2] ZHANG P, LV F Y . A review of the recent advances in superhydrophobic surfaces and the emerging energy-related applications[J]. Energy, 2015, 82:1 068-1 087.

[ 3] SIMPSON J T, HUNTER S R, AYTUG T. Superhydrophobic materials and coatings: a review[J]. Reports on Progress in Physics, 2015, 78(8):086 501.

[ 4] 胡云楚, 梁 金, 王 洁,等. 一种超双疏自清洁表面精细纳米结构的人工种植方法:CN103143493A[P]. 2013-02-26.HU Y C, LIANG J, WANG J, et al. The artificial planting method of self - cleaning surface super - amphiphobic with nanostructures: CN103143493A[P]. 2013-02-26.

[ 5] KUMAR R T R, MOGENSEN K B, Bøggild P . Simple Approach to Superamphiphobic Overhanging Silicon Nanostructures[J]. Journal of Physical Chemistry C, 2010, 114(7):2 936-2 940.

[ 6] GAO L K, XIAO S L, GAN W T, et al. Durable superamphiphobic wood surfaces from Cu2O film modified with fluorinated alkyl silane[J]. RSC ADV,2015,5(119):98 203-98 208.

[ 7] XI J M,LIN F,LEI J . A general approach for fabrication of superhydrophobic and superamphiphobic surfaces[J]. Applied Physics Letters, 2008, 92(5):053 102.

[ 8] 禹 营, 汪家道, 陈大融. 超疏水表面在减阻中的应用:2006 全国摩擦学学术会议论文集(一)[C].哈尔滨:中国机械工程学会摩擦学分会, 2006.YU Y,WANG J D,CHEN D R. The application of superamphiphobic surface in drag reduction:Proceeding of 2006 National Tribology Conference (1) [C]. Harbin: Tribology Branch of Chinese Mechanical Engineering Society, 2006.

[ 9] 张海峰, 刘晓为, 王 锋,等. 铝及其合金超双疏表面制备方法: CN103290418A[P]. 2013-06-24.ZHANG H F, LIU X W, WANG F, et al. The method of preparation of aluminum and its alloys Superamphiphobic surface: CN103290418A[P]. 2013-06-24.

[10] PATANKAR N A. Transition between superhydrophobic states on rough surfaces[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2004, 20(17):7 097-7 102.

[11] CHOI H J, CHOO S, SHIN J H, et al. Fabrication of Superhydrophobic and Oleophobic Surfaces with Overhang Structure by Reverse Nanoimprint Lithography[J]. Journal of Physical Chemistry C, 2013, 117(46):24 354-24 359.

[12] ZHANG G W, LIN S D, WYMAN I, et al. Robust Superamphiphobic Coatings Based on Silica Particles Bearing Bifunctional Random Copolymers[J]. Acs Applied Materials &Interfaces, 2013, 5(24):13 466-13 477.

[13] DENG X, SCHELLENBERGER F, PAPADOPOULOS P,et al. Liquid Drops Impacting Superamphiphobic Coatings[J]. Langmuir the Acs Journal of Surfaces & Colloids,2013, 29(25):7 847-7 856.

[14] TADANAGA K,MORINAGA J,MATSUDA A,et al. Superhydrophobic-Superhydrophilic Micropatterning on Flowerlike Alumina Coating Film by the Sol - Gel Method[J].Chemistry of Materials, 2004, 12(3): 590-592.

[15] TIAN Y,LIU H Q,DENG Z F.Electrochemical growth of gold pyramidal nanostructures:toward super - amphiphobic surfaces[J].Chemistry of Materials: A Publication of the American Chemistry Society,2006,18:5 820-5 822

[16] QIAN B R, SHEN Z Q . Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2005, 21(20):9 007-9 009.

[17] XU Q F, MONDAL B, LYONS A M . Fabricating Superhydrophobic Polymer Surfaces with Excellent Abrasion Resistance by a Simple Lamination Templating Method[J]. Acs Applied Materials & Interfaces, 2011, 3(9):3 508-3 514.

[18] XU LB, CHEN W, MULCHANDANI A, et al. Reversible Conversion of Conducting Polymer Films from Superhydrophobic to Superhydrophilic[J]. Angewandte Chemie, 2005,44(37):6 009-6 012.

[19] 冯立明. 电镀工艺学[M]. 北京:化学工业出版社, 2010.FENG L M. Electroplating technology[M]. Beijing: Chemical Industry Press, 2010.

[20] Tohru Watanabe. Nano-plating :microstructure control theory of plated film and data base of plated film microstructure[M]. Amsterdam :Elsevier, 2004.
文章导航

/