Email Alert  RSS
耐高温涂层专栏

高熵稀土氧化物热障涂层材料研究进展

展开
  • (哈尔滨工业大学材料科学与工程学院,黑龙江哈尔滨150001)

张晓东(1980-),博士,副教授, 博士生导师,主要研究方向为面向极端服役环境的纳米结构陶瓷涂层材料与技术,E-mailzhangxiaodong@hit.edu.cn

收稿日期: 2023-11-06

  修回日期: 2023-11-20

  录用日期: 2023-11-30

  网络出版日期: 2024-03-19

基金资助

国家自然科学基金(5237010620);国家科技重大专项(2017-VI-0020-0093);国家重点研发计划(2020YFB2007900);空间环境材料行为与评价技术国家重点实验室开放基金资助

Research Progress of High Entropy Rare Earth Oxide Thermal Barrier Coating Materials

Expand
  • (School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)
ZHANG Xiaodong (1980- ), Ph.D., Associate Professor, Ph.D. Supervisor, Research Focus: Nanostructured Ceramic Coating Materials and Technologies for Extreme Service Environments, E-mailzhangxiaodong@hit.edu.cn

Received date: 2023-11-06

  Revised date: 2023-11-20

  Accepted date: 2023-11-30

  Online published: 2024-03-19

Supported by

National Natural Science Foundation of China (5237010620); National Science and Technology Major Project (2017-VI-0020-0093); National Key R&D Program of China (2020YFB2007900); Open Foundation from National Key Laboratory of Materials Behavior and Evaluation Technology in Space Environments

摘要

热障涂层(Thermal barrier coating, TBC)材料在航空发动机和燃气轮机的热防护中具有保护高温合金基底免受氧化及腐蚀,并降低高温合金的工作温度的重要作用。新型热障涂层材料中存在许多高熵稀土氧化物,能够实现比单一主成分稀土氧化物更优异的热学、力学、高温相稳定性以及抗烧结、耐腐蚀等性能。但是目前对高熵稀土氧化物的研究仍然停留在初步阶段,其中稀土元素对材料性能的作用尚未完全明确,且没有形成统一标准。简要概述了热障涂层的基本结构,并重点总结了高熵锆酸盐、铈酸盐、铪酸盐、钽酸盐和铌酸盐等5种高熵稀土酸盐的晶体结构、热物理性能与力学性能。对比分析了其与相应的单一组分稀土酸盐的差异,并探讨了影响其性能优劣的多种因素。相比于单一组分稀土氧化物,高熵稀土氧化物的热导率、热膨胀系数和相稳定性均有明显改善。最后,展望了未来高熵稀土热障涂层的发展方向。

本文引用格式

张晓东, 梁逸帆, 宋艺, 王昊, 王铀 . 高熵稀土氧化物热障涂层材料研究进展[J]. 材料保护, 2024 , 57(3) : 15 -27 . DOI: 10.16577/j.issn.1001-1560.2024.0052

Abstract

Thermal barrier coating (TBC) materials play an important role in protecting the superalloy base from oxidation and corrosion, and reducing the operation temperature of the speralloys in the thermal protection of aero engine and gas turbine. There are many high entropy rare earth oxides in the new thermal barrier coating materials, which can achieve better thermal, mechanical, high-temperature phase stability, sintering resistance, corrosion resistance and other properties than the single principal component rare earth oxides. However, the research on high-entropy rare earth oxides is still in the preliminary stage at present. Especially, the role of rare earth elements on material properties has not been fully defined, and no unified standard has been formed. In this paper, the basic structure of thermal barrier coating was briefly reviewed, and the crystal structure, thermophysical and mechanical properties of five high entropy rare earth salts such as high entropy zirconate, cerate, hafniate, tantalate and niobate were emphatically summarized. In addition, the differences between those salts and the corresponding single component of rare earth salts were compared and analyzed, and many factors affecting their performance were discussed. Compared with single component rare earth oxides, the thermal conductivity, thermal expansion coefficient and phase stability of high entropy rare earth oxides were significantly improved. Finally, the future development direction of high entropy rare earth thermal barrier coatings was prospected.
文章导航

/