Email Alert  RSS
综述

高熵合金涂层制备工艺及性能的研究进展

展开
  • 上海工程技术大学a. 城市轨道交通学院, b. 数理与统计学院, 上海 201620
肖 伟(1997-),硕士研究生,研究方向为材料物理与化学,E-mail: M130119103@sues.edu.cn

收稿日期: 2022-07-28

  修回日期: 2022-08-14

  录用日期: 2022-09-15

  网络出版日期: 2023-07-26

基金资助

上海工程技术大学本科生创新项目(CX2121008)资助;

Research Progress on Preparation Methods and Properties of High-Entropy Alloy Coatings

Expand
  • a. School of Urban Rail Transportation,b. School of Mathematical and Statistics, Shanghai University of Engineering Science, Shanghai 201620, China

Received date: 2022-07-28

  Revised date: 2022-08-14

  Accepted date: 2022-09-15

  Online published: 2023-07-26

摘要

随着人类制造材料能力的提高,合金涂层从简单成分演变为复杂成分,由于具有多种主要成分,使得高熵合金涂层获得了高的热稳定性和耐磨性、出色的抗疲劳性、优异的高拉伸性能以及优异的耐腐蚀性和磁性质,这些优异的性能使它们超过了传统的合金涂层的应用范围,所有这些特性都赋予了高熵合金涂层许多潜在的应用前景。研究高熵合金涂层结构和性能的关系,对于进一步开发性能更好的高熵合金涂层材料非常重要。综述了传统高熵合金涂层、难熔高熵合金涂层、复合高熵合金涂层和轻质高熵合金涂层的特点和应用领域,并介绍了高熵合金涂层的种类对其力学性能、摩擦性能和耐腐蚀性能的影响,最后对高熵合金涂层未来的发展方向进行了展望。

本文引用格式

熊梓帆, 肖伟 . 高熵合金涂层制备工艺及性能的研究进展[J]. 材料保护, 2023 , 56(1) : 127 -133 . DOI: 10.16577/j.issn.1001-1560.2023.0020

Abstract

With the improvement of human ability to produce materials,alloy coatings have evolved from containing simple composition to containing complex compositions.And containing multiple major components causes the high-entropy alloy coatings to present high thermal stability and wear resistance,as well as excellent fatigue resistance,high temperature tensile property,corrosion resistance and magnetic properties,and these excellent properties make them exceed the application range of conventional alloy coatings and bring them many potential application prospects.The study of the relationship between microstructure and properties of high-entropy alloy coatings is important for the further development of high-entropy alloy coating materials with better performance.In this paper,the characteristics and application area of conventional high-entropy alloy coatings,refractory high-entropy alloy coatings,composite high-entropy alloy coatings and lightweight high-entropy alloy coatings were reviewed,and the effects of the types of high-entropy alloy coatings on their mechanical properties,frictional properties and corrosion resistance were introduced,and finally an outlook on the development of high-entropy alloy coatings was provided.

参考文献

[ 1] HSUAN P,CHANG Y,CHEN S,et al. Microstructure,thermophysical and electrical properties in AlxCoCrFeNi (0≤x≤2) high-entropy alloys [J]. Materials Science and Engineering: B, 2009, 163(3): 184-189.

[ 2] HUM L, SONG W D, DUAN D, et al. Dynamic behavior and microstructure characterization of TaNbHfZrTi high -entropy alloy at a wide range of strain rates and temperatures[J]. International Journal of Mechanical Sciences, 2020,182: 105 738-105 750.

[ 3] WAN H, SONG D, SHI X, et al. Corrosion behavior of Al0.4CoCu0.6 NiSi0.2 Ti0.25 high-entropy alloy coating via 3D printing laser cladding in a sulphur environment [J]. Journal of Materials Science & Technology, 2021, 60: 197-205.

[ 4] LEE J H, LEE B S. Modal analysis of carbon nanotubes and nanocones using FEM [J]. Computational Materials Science, 2012, 51(1): 30-42.

[ 5] XIE L, BRAULT P, THOMANN A L, et al. AlCoCrCuFeNi high entropy alloy cluster growth and annealing on silicon:A classical molecular dynamics simulation study [J]. Applied Surface Science, 2013, 285(12): 810-816.

[ 6] XIE L, BRAULT P, BAUCHIRE J M, et al.Molecular dynamics simulations of clusters and thin film growth in the context of plasma sputtering deposition [J]. Journal of Physics D Applied Physics, 2014, 47(22): 224 004-224 046.

[ 7] LIU B, WU J, CUI Y, et al. Formation and superconductivity of single phase high - entropy alloys with a tetragonal structure [J]. Acs Applied Electronic Materials, 2020, 2(4): 1 130-1 137.

[ 8] NGUYEN H O,LE M D,NGUYEN H H. Formation of Heterostructure with Appearance of α-Al Phase in Hyper-and Eutectic Al-Si Alloys by Solidification at High Rate[J].Materials Science Forum,2020, 985: 193-201.

[ 9] ZHANG Y, LU Z P, MA S G, et al. Guidelines in predicting phase formation of high-entropy alloys [J]. Mrs Communications, 2014, 4(2): 57-62.

[10] CHUNG C K, CHANG H C, CHANG S C, et al. Evolution of enhanced crystallinity and mechanical property of nanocomposite Ti-Si-N thin films using magnetron reactive cosputtering [J]. Journal of Alloys & Compounds, 2012,537: 318-222.

[11] MA Q, LI L, XU Y, et al. Effect of bias voltage on TiAlSiN nanocomposite coatings deposited by HiPIMS[J]. Applied Surface Science, 2017, 392: 826-833.

[12] MA L,GAO Z,HU S,et al. Effect of cooling rate on microstructure and mechanical properties of Al0. 3CoCrFeNi highentropy alloy[J]. Materials Research Express, 2019, 6(5): 056 540.

[13] DOLIQUE V, THOMANN A L, BRAULT P. High-Entropy Alloys Deposited by Magnetron Sputtering [J]. IEEE Transactions on Plasma Science, 2011, 39(11): 2 478-2 479.

[14] MA Y, FENG Y H, DEBELA T T, et al.Nanoindentation study on the creep characteristics of high - entropy alloy films: Fcc versus bcc structures[J]. International Journal of Refractory Metals and Hard Materials,2016,54:395-400.

[15] TSAI D C, LIANG S C, CHANG Z C, et al. Effects of substrate bias on structure and mechanical properties of(TiVCrZrHf)N coatings[J]. Surface and Coatings Technology, 2012, 207: 293-299.

[16] SONG B, LI Y, CONG Z, et al. Effects of deposition temperature on the nanomechanical properties of refractory high entropy TaNbHfZr films[J]. Journal of Alloys and Compounds, 2019, 797: 1 025-1 030.

[17] HUO W,LIU X,TAN S,et al. Ultrahigh hardness and high electrical resistivity in nano-twinned, nanocrystalline highentropy alloy films[J]. Applied Surface Science, 2018,439: 222-225.

[18] QIU Y, ZHANG S, LEE J W, et al. Towards hard yet selflubricious CrAlSiN coatings[J]. Journal of Alloys and Compounds, 2015, 618: 132-138.

[19] CHENG Y H, BROWNE T, HECKERMAN B, et al.Mechanical and tribological properties of nanocomposite TiSiN coatings[J]. Surface and Coatings Technology, 2010, 204(14): 2 123-2 129.

[20] WU Z F, WANG X D, CAO Q P, et al. Microstructure characterization of AlxCo1Cr1Cu1Fe1Ni1 (x =0 and 2.5)high-entropy alloy films[J]. Journal of Alloys and Compounds, 2014, 609: 137-142.

[21] PENG X, ZHANG Y, ZHAO J, et al. Electrochemical corrosion performance in 3.5%NaCl of the electrodeposited nanocrystalline Ni films with and without dispersions of Cr nanoparticles [J]. Electrochimica Acta, 2006, 51(23):4 922-4 927.

[22] SARKAR P P, KUMAR P, MANNA M K, et al. Microstructural influence on the electrochemical corrosion behaviour of dual-phase steels in 3.5%NaCl solution[J]. Materials Letters, 2005, 59(19/20): 2 488-2 491.

[23] WANG L, ZHANG G, WOOD R J K, et al. Fabrication of CrAlN nanocomposite films with high hardness and excellent anti-wear performance for gear application[J]. Surface and Coatings Technology, 2010, 204(21-22): 3 517-3 524.

[24] LAI C H, LIN S J, YEH J W, et al. Preparation and characterization of AlCrTaTiZr multi - element nitride coatings[J]. Surface and Coatings Technology, 2006, 201(6):3 275-3 280.

[25] BRAIC V,BALACEANU M, BRAIC M, et al. Characterization of multi - principal - element (TiZrNbHfTa) N and(TiZrNbHfTa) C coatings for biomedical applications[J].Journal of the Mechanical Behavior of Biomedical Materials,2012, 10: 197-205.

[26] PARVATHY VENU M, SHRISHA B V, BALAKRISHNA K M, et al. Deposition of undoped and Al doped ZnO thin films using RF magnetron sputtering and study of their structural, optical and electrical properties:AIP Conference Proceedings[C]. Bhubaneswar: American Institute of Physics,2017: 080 041-080 045.

[27] CHANG S Y, WANG C Y, CHEN M K, et al. Ru incorporation on marked enhancement of diffusion resistance of multi-component alloy barrier layers[J]. Journal of Alloys and Compounds, 2011, 509(5): 85-89.

[28] BHATTACHARJEE P P, SATHIARAJ G D, ZAID M,et al. Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy[J]. Journal of Alloys and Compounds, 2014, 587: 544-552.

[29] SENKOV O N, SENKOVA S V, WOODWARD C. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys[J]. Acta Materialia, 2014, 68:214-228.

[30] HUANG P K, YEH J W. Effects of nitrogen content on structure and mechanical properties of multi - element(AlCrNbSiTiV) N coating[J]. Surface and Coatings Technology, 2009, 203(13): 1 891-1 896.

[31] LIU J, XING Z, WANG H, et al.Microstructure and fatigue damage mechanism of FeCoNiAlTiZr high-entropy alloy film by nanoscale dynamic mechanical analysis[J]. Vacuum,2019, 159: 516-523.

[32] BRAECKMAN B R, BOYDENS F, HIDALGO H, et al.High entropy alloy thin films deposited by magnetron sputtering of powder targets[J]. Thin Solid Films, 2015, 580:71-76.

[33] KATAKAM S, JOSHI S S, MRIDHA S, et al. Laser assisted high entropy alloy coating on aluminum: microstructural evolution[J]. Journal of Applied Physics, 2014, 116(10):104 906-104 913.

[34] ZHANG J, ZHU J B, SUN Z Y, et al. Preparation of Amorphous Coatings of AlFeCoNiCuZrV Alloy by Direct Current Magnetron Sputtering Method[J]. Asian Journal of Chemistry, 2014, 26(17): 5 627-5 630.

[35] SHAYSULTANOV D G, STEPANOV N D, KUZNETSOV A V, et al.Phase composition and superplastic behavior of a wrought AlCoCrCuFeNi high-entropy alloy[J]. Jom, 2013,65(12): 1 815-1 828.

[36] GUO Y X, LIU Q B, SHANG X J. In situ TiN-reinforced CoCr2FeNiTi0.5 high-entropy alloy composite coating fabricated by laser cladding[J]. Rare Metals, 2020, 39(10):1 190-1 195.

[37] ALVI S, AKHTAR F. High temperature tribology of CuMo-TaWV high entropy alloy[J]. Wear, 2019, 426: 412-419.

[38] TIAN L H, XIONG W, LIU C, et al. Microstructure and Wear Behavior of Atmospheric Plasma - Sprayed AlCoCrFeNiTi High-Entropy Alloy Coating [J]. Journal of Materials Engineering and Performance, 2016, 25(12):5 513-5 521.

[39] YAO C Z, ZHANG P, LIU M,et al. Electrochemical preparation and magnetic study of Bi-Fe-Co-Ni-Mn high entropy alloy [J]. Electrochimica Acta, 2008, 53(28): 8 359-8 365.

[40] ZHENG S, CAI Z, PU J, et al. A feasible method for the fabrication of VAlTiCrSi amorphous high entropy alloy film with outstanding anti-corrosion property [J]. Applied Surface Science, 2019, 483:870-874.

[41] CHEN Y H, CHUANG W S, HUANG J C, et al. On the bio-corrosion and biocompatibility of TiTaNb medium entropy alloy films [J]. Applied Surface Science, 2020, 508:145 307-145 317.

[42] GAO L B, SUN D, LU Y, et al. Microstructure, Mechanical and Corrosion Behaviors of CoCrFeNiAl0.3 High Entropy Alloy (HEA) Films [J]. Coatings, 2017, 7 (10):156-163.

[43] LIN S Y, CHANG S Y, CHANG C J, et al. Nanomechanical Properties and Deformation Behaviors of Multi-Component (AlCrTaTiZr)NxSiy High-Entropy Coatings [J]. Entropy, 2013, 16(1): 405-417.

[44] KIM H, NAM S, ROH A, et al. Mechanical and electrical properties of NbMoTaW refractory high-entropy alloy thin films [J]. International Journal of Refractory Metals and Hard Materials, 2019, 80:286-291.

[45] ZHAO S, WANG H, GU J, et al. High strain rate sensitivity of hardness in Ti-Zr-Hf-Be-(Cu/Ni) high entropy bulk metallic glasses[J]. Journal of Alloys and Compounds,2018, 742: 312-317.
文章导航

/