Email Alert  RSS
综述

湿硫化氢环境HSLA钢焊接接头应力腐蚀开裂的研究进展 

展开
  • 1. 河南省锅炉压力容器安全检测研究院, 河南 郑州 450000; 2. 郑州大学化学学院, 河南 郑州 450000
高梦杰(1996-),硕士研究生,主要从事无机材料方面的研究,E-mail:1980123348@qq.com

收稿日期: 2022-07-16

  修回日期: 2022-08-12

  录用日期: 2022-09-18

  网络出版日期: 2023-07-27

基金资助

河南省科技计划项目(Q420R制压力容器制造工艺及工况条件对安全性能影响的研究,立项编号202102210189)资助;

Research Progress of Stress Corrosion Cracking of HSLA Steel Welded Joints in Wet H2S Environment

Expand
  • 1. The Boiler & Pressure Vessel Safety Inspection Institute of Henan Province, Zhengzhou 450000, China;2. College of Chemistry, Zhengzhou University, Zhengzhou 450000, China

Received date: 2022-07-16

  Revised date: 2022-08-12

  Accepted date: 2022-09-18

  Online published: 2023-07-27

摘要

随着石油化工的发展,国内石油深度开采和中东石油输入的持续增加,原料中的硫元素含量逐渐增加,硫化氢对焊接接头的腐蚀会导致整个构件的失效,给生产安全带来极大威胁。国内外研究人员就硫化氢对高强度低合金(HSLA)钢焊接接头的应力腐蚀给予了很大关注。简要阐述了在湿硫化氢环境下,HSLA钢焊接接头在使用时发生应力腐蚀开裂的机理,讨论了影响焊接接头的应力腐蚀的因素,总结了探索应力腐蚀时的不同实验方法,并与碳钢的应力腐蚀进行了对比。

本文引用格式

王峰, 高梦杰 . 湿硫化氢环境HSLA钢焊接接头应力腐蚀开裂的研究进展 [J]. 材料保护, 2023 , 56(1) : 153 -162 . DOI: 10.16577/j.issn.1001-1560.2023.0023

Abstract

With the development of petrochemical industry, the deep exploitation of domestic petroleum and the continuous increase of oil input from the Middle East, the sulfur content in raw materials is gradually increased. The corrosion of hydrogen sulfide on welded joints can lead to the failure of the whole component, bringing great threat to production safety. Researchers at home and abroad have paid great attention to the stress corrosion of high-strength low-alloy(HSLA) steel welded joints caused by hydrogen sulfide. In this paper, the mechanism of stress corrosion cracking of HSLA steel welded joints in service in a wet hydrogen sulfide environment was briefly described, and the factors that influencing stress corrosion of welded joints were discussed. Furthermore, different experimental methods for exploring stress corrosion were summarized and the stress corrosion was compared with that of carbon steel.

参考文献

[ 1] CHUMALO H V. Influence of Hydrogen Sulfide on the Corrosion—Mechanical Properties of Welded Joints of Pipe Steel[J]. Materials Science, 2012, 48(2):176-179.

[ 2] 张 玮, 吴东阳, 马 琦. 湿H2S 环境中含缺陷Q345R钢焊接接头的应力腐蚀试验研究[J]. 浙江工业大学学报, 2013, 41(4):380-384.ZHANG W, WU D Y, MA Q.Stress corrosion of Q345R welding joint containing defects in wet hydrogen sulfide[J].Journal of Zhejiang University of Technology,2013,41(4):380-384.

[ 3] 肖 蒙, 张 玮, 郑三龙, 等. 焊接热输入对Q345R 钢接头湿硫化氢应力腐蚀敏感性的影响[J]. 材料保护,2015, 48(4):33-35.XIAO M, ZHANG W, ZHENG S L, et al. Effect of welding heat input on microstructure and stress corrosion sensitivity to wet hydrogen sulfide of welded joints of Q345R steel[J].Materials Protection, 2015, 48(4):33-35.

[ 4] 陈 明, 崔 琦. 硫化氢腐蚀机理和防护的研究现状及进展[J]. 石油工程建设, 2010, 36(5):1-5.CHEN M, CUI Q. Current research status and progress of H2S corrosion mechanism and prevention[J]. Petroleum Engineering Constructionm, 2010, 36(5):1-5.

[ 5] 刘 伟,蒲晓林,白小东,等. 油田硫化氢腐蚀机理及防护的研究现状及进展[J]. 石油钻探技术, 2008, 36(1):83-86.LIU W, PU X L, BAI X D, et al.Development of hydrogen sulfide corrosion and prevention[J]. Petroleum Drilling Techniques, 2008, 36(1):83-86.

[ 6] 杨潇坤,程丽华,于 湘,等. 硫化氢环境中压力容器用钢腐蚀研究现状与进展[J]. 当代化工, 2016, 45(1):122-124.YANG X K, CHENG L H, YU X, et al. Current status and progress of study on the corrosion of steel for pressure vessels in wet hydrogen sulfide environment [J]. Contemporary Chemical Industry, 2016, 45(1):122-124.

[ 7] 张 婧,李海新,殷子强,等. 焊接接头的腐蚀研究进展[J]. 腐蚀科学与防护技术, 2018, 30(6):661-670.ZHANG J, LI H X, YIN Z Q, et al. Research progress on corrosion of welded joints[J]. Corrosion Science and Protection Technology, 2018, 30(6):661-670.

[ 8] WEI S, ZHENG S, XIE C, et al. Ab initio molecular dynamics study of wet H2 S adsorption and dissociation on Fe(100) surface[J]. Journal of Molecular Liquids,2020, 319(12):114 135.

[ 9] 向 利,陈 川,杨 阳,等. 大气中硫化氢对钢材腐蚀影响与防护[J]. 装备环境工程, 2020, 17(8):78-84.XIANG L, CHEN C, YANG Y, et al. Influence of atmospheric hydrogen sulfide on steel corrosion and protection[J].Equipment Environmental Engineering, 2020, 17 (8):78-84.

[10] KHOMA M S,YURKEVYCH R M,CHUMALO H V,et al.Influence of defects of welded joints of 17G1SU pipe steel on its resistance to hydrogen-sulfide cracking [J]. Materials Science, 2012, 47(4):569-573.

[11] 褚武扬. 氢致开裂和应力腐蚀机理的前沿问题[J]. 腐蚀科学与防护技术, 1993, 5(3):151-157.CHU W Y. A review of mechanisms of hydrogen-induced cracking and stress corrosion cracking[J]. Corrosion Science and Protection Technology, 1993, 5(3):151-157.

[12] 张俊超. 氢致开裂试验及分析[J]. 中国高新技术企业,2009(12):18-19.ZHANG J C. Hydrogen induced cracking test and analysis[J]. Chinese H-Tech Enterprises, 2009(12):18-19.

[13] 阚 博. 海工用钢的应力诱导氢扩散及氢致开裂研究[D]. 北京: 北京科技大学, 2020.KAN B. Investigation of stress-induced hydrogen diffusion and hydrogen-induced cracking in marine steels[D]. Beijing: University of Science and Technology Beijing, 2020.

[14] 卢永生. 湿硫化氢环境下压力容器钢板的应力腐蚀机理与材料选择[J]. 科技创新与应用, 2014(4):96-96.LU Y S. Stress corrosion mechanism and material selection of pressure vessel steel plate in wet hydrogen sulfide environment[J]. Technology Innovation and Application, 2014(4):96-96.

[15] 张凤春, 李春福, 傅爱红. 硫化物应力腐蚀开裂的理论研究进展[J]. 材料导报, 2012, 26(增刊2):345-348.ZHANG F C, LI C F, FU A H. The theoretical research progress of sulfide stress corrosion cracking[J]. Materials Reports, 2012, 26(S2):345-348.

[16] HAN Y, LUO J B, FU A Q, et al. Hydrogen Sulfide Stress Cracking in a Q345R Welded Joint[J]. Materials Science Forum,2021, 1 035:486-491.

[17] 王荣贵. 化工装置中钢在湿硫化氢环境下的腐蚀机理与设备选材(上)[J]. 化肥设计, 2002, 40(1):5-8.WANG R G. Corrosion mechanis mof the steel under the environment of the wet hydrogen sulfide and the equipment material selection in the chemical plant (part 1) [J]. Chemical Fertilizer Design, 2002, 40(1):5-8.

[18] 杨 明,马晓勇,龙 云,等. 碳钢在湿硫化氢环境中的应力导向氢致开裂行为[J]. 腐蚀与防护, 2014, 35(12):1 226-1 229.YANG M, MA X Y, LONG Y, et al. Stress oriented hydrogen induced cracking behavior of carbon steel in wet H2 S environment[J]. Corrosion & Protection, 2014, 35(12):1 226-1 229.

[19] WANG M, AKIYAMA E, TSUZAKI K. Effect of hydrogen on the fracture behavior of high strength steel during slow strain rate test[J]. Corrosion Science, 2007, 49(11):4 081-4 097.

[20] 赵小宇. MS X70 管线钢焊接接头在硫化氢环境下腐蚀失效行为研究[D]. 武汉: 武汉科技大学, 2018.ZHAO X Y. The corrosion failure behavior of welded MS X70 pipeline steel in H2S environment[D]. Wuhan: Wuhan University of Science and Technology, 2018.

[21] 李光福,吴 忍,田井雷,等. 低合金超高强度钢的晶界性质对应力腐蚀断裂行为的影响[J]. 宇航学报, 1996,16(3):59-64.LI G F, WU R, TIAN J L, et al. Effect of grain boundary properties on stress corrosion fracture behavior of low alloy ultra-high strength steel [J].Journal of Astronautics, 1996,16(3):59-64.

[22] KISAKA Y, SENIOR N, GERLICH A P. A Study on Sulfide Stress Cracking Susceptibility of GMA Girth Welds in X80 Grade Pipes[J]. Metallurgical and Materials Transactions A, 2018, 50(1):249-256.

[23] 喻巧红, 刘 超, 庞晓露, 等. Q235 焊接接头的缝隙腐蚀行为[J]. 金属学报, 2014, 50(11):1 319-1 326.YU Q H, LIU C, PANG X L, et al. Crevice corrosion behaviors of Q235 weld joint[J]. Acta Metallurgica Sinica,2014, 50(11):1 319-1 326.

[24] 肖 蒙. 焊接热输入对Q345R 钢焊接接头在湿硫化氢环境中应力腐蚀敏感性影响的试验研究[D]. 杭州: 浙江工业大学, 2013.XIAO M. Stress corrosion experimental research for the effects of welding heat input on Q345R steel welded joints in wet hydrogen sulfide solution[D]. Hangzhou: Zhejiang University of Technology, 2013.

[25] 黄运华,陈 恒,赵起越,等. 高强度低合金钢中纳米析出相对腐蚀行为影响的研究进展[J]. 工程科学学报,2021, 43(3):321-331.HUANG Y H, CHEN H, ZHAO Q Y, et al. Influence of nanosized precipitate on the corrosion behavior of high -strength low-alloy steels: a review[J]. Chinese Journal of Engineering, 2021, 43(3):321-331.

[26] LU B, LUO J L, IVEY D G. Near-Neutral pH Stress Corrosion Cracking Susceptibility of Plastically Prestrained X70 Steel Weldment[J]. Metallurgical and Materials Transactions A, 2010, 41(10):2 538-2 547.

[27] WANG J B, XIAO G C, ZHAO W, et al. Microstructure and Corrosion Resistance to H2S in the Welded Joints of X80 Pipeline Steel[J]. Metals, 2019, 9(12):1 325.

[28] 白林越,江克斌,高 磊,等. 残余应力对焊接结构腐蚀行为的影响规律研究[J]. 电焊机, 2018, 48(4):85-90.BAI L Y,JIANG K B,GAO L,et al. Investigation on influence law of residual stress on the corrosion behavior of welded structure[J]. Electric Welding Machine, 2018, 48(4):85-90.

[29] WANG J,GUO C,HUANG K,et al. Study on fatigue crack growth rate of 15CrMo steel based on stress ratio and corrosion environment[J]. IOP Conference Series:Earth and Environmental Science,2020, 508(1):012 215.

[30] 卢志明, 朱建新, 高增梁. 16MnR 钢在湿硫化氢环境中的应力腐蚀开裂敏感性研究[J]. 腐蚀科学与防护技术,2007, 19(6):410-413.LU Z M,ZHU J X,GAO Z L. Stress corrosion cracking susceptibility of 16MnR steel in wet hydrogen sulfide environments[J]. Corrosion Science and Protection Technology,2007, 19(6):410-413.

[31] 马团校. 硫化氢腐蚀与防护[J]. 全面腐蚀控制, 2021,35(1):91-93.MA T X. Hydrogen sulfide corrosion and protection[J]. Total Corrosion Control, 2021, 35(1):91-93.

[32] 赵培琪. 油井管硫化氢腐蚀研究进展[J]. 云南化工,2019, 46(12):59-60.ZHAO P Q. Research progress in hydro gensulfide corrosion of oil well pipe[J]. Yunnan Chemical Technology, 2019,46(12):59-60.

[33] 姜亮亮, 巩建鸣, 耿鲁阳, 等. 焊后热处理对13MnNiMoR钢焊接接头在服役环境下SCC 敏感性的影响[J]. 压力容器, 2012, 29(4):1-6.JIANG L L, GONG J M, GENG L Y, et al. Influence of post heat-treatment on the stress corrosion cracking sensitivity of 13MnNiMoR weld joints in service condition[J]. Pressure Vessel Technology, 2012, 29(4):1-6.

[34] 毕凤琴, 张春成, 孙丽丽, 等. 16MnR 钢焊接接头表面纳米化及抗湿H2 S 应力腐蚀性能研究[J]. 化工机械,2009, 36(1):1-4.BI F Q, ZHANG C C, SUN L L, et al. Researches on the nanocrystallization of the surface of the welded joints of 16MnR steel and their performance of wet H2S stress corrosion resistance[J]. Chemical Engineering & Machinery,2009, 36(1):1-4.

[35] 孙新阁, 霍立兴, 张玉凤. 恒位移加载条件下X65 管线钢H2S 应力腐蚀研究[J]. 腐蚀科学与防护技术, 2006,18(3):169-172.SUN X G, HU L X, ZHANG Y F. H2S induced stress corrosion for X65 pipe-line steel under loading with constant displacement[J]. Corrosion Science and Protection Technology, 2006, 18(3):169-172.

[36] 王 博, 张 玮, 杨铁成. 恒位移条件下X70 钢在硝酸盐环境中的裂纹扩展行为[J]. 轻工机械, 2011, 29(3):105-109.WANG B, ZHANG W, YANG T C. Crack propagation behavior of X70 pipeline steel in nitrate under loading with constant displacement[J]. Light Industry Machinery, 2011,29(3):105-109.

[37] 朱玉琴, 苏 艳, 舒 畅, 等. 海洋大气对TA15 钛合金应力腐蚀影响研究[J]. 装备环境工程,2012,9(2):85-88.ZHU Y Q, SU Y, SHU C, et al. Research on influence of marine atmosphere on stress corrosion of TA15 titanium alloy[J]. Equipment Environmental Engineering, 2012, 9(2):85-88.

[38] 张 欢. 海洋环境用低合金钢及焊接接头腐蚀行为研究[D]. 镇江: 江苏科技大学, 2014.ZHANG H. Investigation of corrosion behavior of low-alloy steel and its welded joint in marine environment[D]. Zhenjiang: Jiangsu University of Science and Technology, 2014.

[39] 徐亚洲. 应力腐蚀研究进展[J]. 石油化工安全环保技术, 2021, 37(1):26-29.XU Y Z. Research progress of stress corrosion[J]. Petrochemical Safety and Environment Protection Technology,2021, 37(1):26-29.

[40] 范银华, 陈江华. 钢制长输油气管道硫化氢腐蚀的电化学研究方法[J]. 广州化工, 2020, 48(11):39-43.FAN Y H, CHEN J H. Hydrogen sulfide corrosion and electrochemical research methods for long-distance oil and gas pipelines[J]. Guangzhou Chemical Industry, 2020, 48(11):39-43.

[41] ZAGIDULLIN R N, DMITRIEVA T G, YAMALEEV R F,et al. Corrosion inhibitors based on regenerated plant raw material for protection of gas and oil recovery equipment[J]. Chemical and Petroleum Engineering,2012, 48:5-6.

[42] MAGERRAMOV A M, BAIRAMOV M R, KHOSEINZADE S B, et al. Synthesis of hydrogen sulfide corrosion inhibitors for oil production[J]. Petroleum Chemistry,2013, 53(6):423-425.

[43] 丁同银. 炼厂湿硫化氢环境碳钢和低合金钢设备的腐蚀和防护[J]. 广东化工, 2016, 43(13):103-105.DING T Y. Corrosion and anti-corrosion measures of carbon and low alloy steel process equipment in refinery under wet hydrogen sulfide service[J]. Guangdong Chemical Industry,2016, 43(13):103-105.

[44] 刘 健. 石油化工设备湿硫化氢腐蚀与防护[J]. 化工设计通讯, 2017, 43(10):85-85.LIU J. Chemical andchemical equipment wet hydrogen sulfide corrosion and protection[J]. Chemical Engineering Design Communications, 2017, 43(10):85-85.

[45] MANUEL Q L, NOE R J, ROSARIO D Y D, et al. Analysis of the Physicochemical, Mechanical, and Electrochemical Parameters and Their Impact on the Internal and External SCC of Carbon Steel Pipelines[J]. Materials (Basel),2020, 13(24):5 771.

[46] WEN X,BAI P,LUO B,et al. Review of recent progress in the study of corrosion products of steels in a hydrogen sulphide environment [J]. Corrosion Science, 2018, 139:124-140.

[47] 刘 艳, 屈定荣. 碳钢在湿硫化氢环境中的腐蚀行为研究[J]. 石油化工腐蚀与防护, 2018, 35(3):21-23.LIU Y, QU D R. Study on corrosion behavior of carbon steel in wet hydrogen sulfide environment[J]. Corrosion & Protection in Petrochemical Industry, 2018, 35(3):21-23.

[48] CHEN L. The Dependence of Electrochemical Behaviors on the Corrosion Products of L360NCS Steel Exposed to Wet H2 S Environments[J]. International Journal of Electrochemical Science, 2016, 11:3 987-3 999.

[49] 徐连勇,亢朝阳,路永新,等. 碳钢焊接接头腐蚀行为分析[J]. 焊接学报, 2018, 39(1):97-101.XU L Y, KANG Z Y, LU Y X, et al. Analysis of corrosion behavior of carbon steel weld joint[J]. Transactions of the China Welding Institution, 2018, 39(1):97-101.
文章导航

/