Email Alert  RSS
综述篇

钛合金气门在高海拔环境中的应用优势与表面处理

展开
  • (1. 西南林业大学机械与交通学院,云南 昆明 650224;2. 云南省 Dongyang Li 院士工作站,云南 昆明 650224;3. 攀枝花学院智能制造学院,四川 攀枝花 617000)
王海军(1965-),高级工程师,研究方向为机械摩擦磨损机理及控制,E-mail: 306117960@ qq.com

收稿日期: 2023-09-06

  修回日期: 2023-10-29

  录用日期: 2023-11-29

  网络出版日期: 2024-05-31

基金资助

四川省钒钛材料工程研究中心开放项目( 2021 - FTGC - Z - 08);云南省教育厅科学研究基金项目( 2023Y0760、2023Y0762)资助

Application Advantages and Surface Treatments of Titanium Alloy Valves in High Altitude Environments

Expand
  • (1. School of Machinery and Transportation,Southwest Forestry University,Kunming 650224,China;2.Yunnan Li Dongyang Academician Workstation,Kunming 650224,China;3.School of Intelligent Manufacturing,Panzhihua University,Panzhihua 617000,China)
WANG Haijun (1965-),Senior Engineer,Research Focus:The Mechanism and Control of Mechanical Friction and Wear,E-mail: 306117960@ qq.com

Received date: 2023-09-06

  Revised date: 2023-10-29

  Accepted date: 2023-11-29

  Online published: 2024-05-31

Supported by

Sichuan Vanadium and Titanium Materials Engineering Research Center Open Project (2021-FTGC-Z-08);Yunnan Provincial Department of Education Science Research Fund Project (2023Y0760,2023Y0762)

摘要

在高海拔环境下,低温低压环境会导致柴油发动机的动力下降和燃烧不完全,这也会导致气门组件磨损加剧。虽然几十年来,气门制造技术已经得到了广泛探索,但是气门组件经常面临高温高压、频繁冲击和摩擦的严峻工作条件,导致摩擦磨损机制变得异常复杂,过去的气门制造优化措施并没有完全解决气门组件磨损的问题。为此,提出了一种新的解决方案,即使用铝化钛合金作为气门材料。该材料具有热强度高和重量轻的优点,非常适合用作柴油发动机气门材料。然而,由于钛铝合金的耐磨性存在短板,因此在投入实际使用之前,需要通过表面处理工艺来改善其摩擦学性能和疲劳特性。总结了多种钛铝合金表面处理方法的研究情况,包括超声表面轧制、激光表面熔覆技术、化学热处理工艺、激光表面微织构等。这些表面处理技术可以有效地改善铝化钛合金材料的摩擦学性能和疲劳特性,并消除对材料表面的负面影响。研究者们还通过使用不同的表面处理技术的复合处理来达到更好的效果。指出了未来的研究重点和方向是深入研究铝化钛合金的精确加工参数以及使用多种加工方式的可行性和作用。这将有助于更好地解决气门组件的磨损问题,提高柴油发动机的性能和可靠性。此外,还需要对铝化钛合金在其他领域的应用进行更广泛地研究和探索。

本文引用格式

郭思良, 张健, 王海军, 陈文刚, 程家豪 . 钛合金气门在高海拔环境中的应用优势与表面处理[J]. 材料保护, 2024 , 57(5) : 105 -118 . DOI: 10.16577/j.issn.1001-1560.2024.0108

Abstract

In high-altitude environments, low temperature and low-pressure conditions can lead to decreased power and incomplete combustion in diesel engines, which may also cause increased wear of valve components. Although valve manufacturing technology has been widely explored for decades, valve components often face severe working conditions of high temperature, high pressure, frequent impacts and friction, resulting in an exceptionally complex friction wear mechanism. Previous optimization measures for valve manufacturing have not fully addressed the problem of valve component wear. Therefore, a novel solution was proposed, namely the use of aluminized titanium alloy as valve material. This material, characterized by its high thermal strength and lightweight properties, is particularly suitable for use as valve material in diesel engines. However, due to the limited wear resistance of aluminized titanium alloys, it was necessary to improve their tribological performance and fatigue characteristics through surface treatment processes before practical application. In this paper, research on various surface treatment methods for aluminized titanium alloys was summarized, including ultrasonic surface rolling, laser surface cladding, chemical heat treatment and laser surface micro-texture. These surface treatment techniques effectively enhanced the tribological performance and fatigue characteristics of the aluminized titanium alloy materials and mitigated negative impacts on the material surfaces. Researchers have also achieved better results by employing composite treatments using different surface treatment technologies. The future research focus and direction were pointed out to be in-depth research on the precise machining parameters of aluminized titanium alloys, as well as the feasibility and effectiveness of using multiple machining methods. This will contribute to better addressing the issue of wear in valve components, thereby enhancing the performance and reliability of diesel engines. Furthermore, the applications of aluminized titanium alloys in other fields require to be widely researched and explored.
文章导航

/