Email Alert  RSS
激光加工及增材制造技术专栏

激光与CMT-P 电弧复合增材构件的微观组织特征研究

展开
  • 1中国民航大学航空工程学院; 2天津职业技术师范大学机械工程学院

张志强(1985-), 副教授, 博士, 主要研究方向为增材制造以及高性能焊接, E-mail: zqzhang@cauc.edu.cn;

张天刚(1978-),副教授,博士,主要研究方向为激光加工技术,E-mail:tgzhang@cauc.edu.cn



收稿日期: 2023-05-11

  修回日期: 2023-06-12

  录用日期: 2023-07-14

  网络出版日期: 2023-10-15

基金资助

航空科学基金(2020Z049067002);天津市自然科学基金(22JCYBJC01280);中央高校基本科研业务费项目(3122023039);国家自然科学基金(51905536)资助

Study on Microstructure Characterization by Laser and CMT-P Arc Hybrid Additive Components

Expand
  • (1.College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China;2.Mechanical Science and Engineering College, Tianjin University of Technology and Education, Tianjin 300222, China)

Received date: 2023-05-11

  Revised date: 2023-06-12

  Accepted date: 2023-07-14

  Online published: 2023-10-15

摘要

为了明确铝合金增材制造过程中的微观组织特征,以飞机结构常用的2024 铝合金为研究对象,采用激光与CMT-P 电弧复合增材制造技术成功地制备了2024 高强铝合金薄壁构件。 运用光学显微镜、扫描电镜、电子探针等表征手段,研究了增材构件不同区域的微观组织特征,并探究了其对显微硬度的影响规律。 结果表明:增材制造过程中独特的热循环特性使得薄壁增材件由熔池边界(MPB, melt pool boundary)、熔池区(MPZ, melt pool zone)和热影响区(HAZ, heat affected zone)3 个特征区域交替出现的层带结构所形成。 其中,MPB 的显微组织为细小的等轴晶;MPZ 底部的显微组织为细小的柱状晶,上部为粗大的柱状晶和等轴晶;HAZ 的显微组织为粗大的等轴晶。 试样内部主要析出相为S 相(Al2CuMg)和θ 相(Al2Cu),S 相主要分布在晶界交叉部位和晶粒内部,θ 相主要分布在晶粒边界。 增材试样内部层间区域的显微硬度低于母材,主要归因于层间存在气孔以及晶界处存在较多的析出相。

本文引用格式

张志强, 李涵茜, 贺世伟, 路学成, 王浩, 张天刚 . 激光与CMT-P 电弧复合增材构件的微观组织特征研究[J]. 材料保护, 2023 , 56(10) : 78 -82 . DOI: 10.16577/j.issn.1001-1560.2023.0237

Abstract

In order to clarify the microstructural characteristics of the aluminum alloy additive manufacturing process, the 2024 aluminum alloy commonly used in aircraft structures was used as the research object, and the 2024 high-strength aluminum alloy thin-walled components were successfully prepared using laser and CMT-P arc composite additive manufacturing technology.Using optical microscope,scanning electron microscope, electron probe and other characterization methods, the microstructural characteristics of different areas of the additive components were studied, and their influence law on the microhardness was explored.Results showed that owing to the unique thermal cycling characteristics of the additive manufacturing process, the thin-walled additive parts were formed by a layered structure with alternating three characteristic regions: melt pool boundary (MPB), melt pool zone (MPZ), and heat affected zone (HAZ).Among them, the microstructure of MPB was fine equiaxed crystals; the microstructure of MPZ was fine columnar crystals at the bottom, and coarse columnar crystals and equiaxed crystals in the upper part; the microstructure of HAZ was coarse equiaxed crystals.Moreover, the main precipitated phases inside the specimen were S phase (Al2CuMg) and θ phase (Al2Cu), with the S phase mainly distributed at the intersection of grain boundaries and inside the grains, and θ phase mainly distributed at the grain boundaries.Besides, the microhardness of the interlaminar region inside the additive sample was lower than that of the base material, which might be mainly attributed to the presence of pores between the layers and the presence of more precipitated phases at the grain boundaries.

参考文献

[1] 郜庆伟,赵 健,舒凤远,等.铝合金增材制造技术研究进展[J].材料工程, 2019, 47: 32-42.GAO Q W, ZHAO J, SHU F Y, et al.Research progress in aluminum alloy additive manufacturing[J].Journal of Materials Engineering, 2019, 47: 32-42.

[2] 罗先甫, 查小琴, 夏申琳.2×××系航空铝合金研究进展[J].轻合金加工技术,2018, 46: 17-25.LUO X F,ZHA X Q,XIA S L.Research progress of 2×××series aviation aluminum alloys[J].Light Alloy Fabrication Technology, 2018, 46: 17-25.

[3] BYRON B M, PAUL G, GLEN S, et al.Metal additive manufacturing in aerospace: A review[J].Materials & Design, 2021, 10: 110008.

[4] CEM S A, VICTORIA A, SHI Z S, et al.Challenges in additive manufacturing of high-strength aluminium alloys and current developments in hybrid additive manufacturing[J].International Journal of Lightweight Materials and Manufacture, 2021, 4: 246-261.

[5] CHEN X Y,YU G, HE X L, et al.Investigation of thermal dynamics for different leading configuration in hybrid laser-MIG welding[J].Optics & Laser Technology, 2021, 134:106567.

[6] 林忠钦, 于忠奇, 戴冬华, 等.复杂高筋薄壁构件旋压-增材复合制造技术发展与展望[J].航空学报,2023, 44(9): 6-29.LIN Z Q, YU Z Q, DAI D H, et al.Development and prospect of metal spinning - additive hybrid manufacturing technology for complex thin-walled component with high ribs[J].Acta Aeronautica et Astronautica Sinica,2023, 44(9): 6-29.

[7] 陈庆宏,吕小青,徐连勇,等.P92 钢的CMT +P 焊接接头组织性能[J].焊接学报, 2018, 39(12): 110-114.CHEN Q H, LV X Q, XU L Y, et al.Microstructure and properties of CMT +P welded joints of P92 steel[J].Transactions of the China Welding Institution, 2018, 39(12):110-114.

[8] CAI H Y, XU L, ZHAO L Y, et al.Cold metal transfer plus pulse (CMT +P) welding of G115 steel:Mechanisms,microstructure, and mechanical properties[J].Materials Science and Engineering: A, 2022, 843: 143-156.

[9] 张志强, 勾青泽, 路学成, 等.高强铝合金CMT+P 电弧增材制造熔滴过渡行为研究[J].航空学报, 2023, 44(24): 427881.ZHANG Z Q, GOU Q Z, LU X C, et.al.Study on droplet transfer behavior of high strength aluminum alloy CMT +P arc additive manufacturing[J].Acta Aeronautica et Astronautica Sinica, 2023, 44(24): 427881.

[10] CONG B Q, OUYANG R J, QI B J, et al.Influence of Cold Metal Transfer Process and Its Heat Input on Weld Bead Geometry and Porosity of Aluminum-Copper Alloy Welds[J].Rare Metal Materials and Engineering, 2016, 45 (3):606-611.

[11] ZHANG Z Q, YAN J P, LU X C, et al.Optimization of porosity and surface roughness of CMT-P wire arc additive manufacturing of AA2024 using response surface methodology and NSGA-II[J].Journal of Materials Research and Technology, 2023, 24: 6 923-6 941.

[12] SALEH M K, YU Y F, LIN F.A review on additive manufacturing of Al-Cu (2xxx) aluminium alloys, processes and defects[J].Materials Science and Technology, 2021, 37:805-829.

[13] SELVI S, VISHVAKSENAN A, RAJASEKAR E.Cold metal transfer (CMT) Technology-An overview[J].Defence Technology, 2018, 14(1),28-44.

[14] GONG G H,YE J J, CHI Y M, et al.Research status of laser additive manufacturing for metal: a review[J].Journal of Materials Research and Technology,2021,15:855-884.

[15] LIU M R, MA G Y, LIU D H, et al.Microstructure and mechanical properties of aluminum alloy prepared by laserarc hybrid additive manufacturing[J].Journal of Laser Applications, 2020, 32: 022052.

[16] 庄忠良,宋 刚,祝美丽,等,激光-MIG 复合热源铝合金层间堆积快速成形[J].焊接学报,2013,34:71-74.ZHUANG Z L,SONG G,ZHU M L,et al.Laser-MIG composite heat source aluminum alloy interlayer stacking rapid prototyping[J].Transactions of the China Welding Institution, 2013, 34: 71-74.

[17] 王 鹏,张兆栋,宋 刚,等,铝合金激光-电弧复合增材制造工艺分析[J].焊接技术,2016,45:10-13.WANG P, ZHANG Z D, SONG G, et al.Analysis of laserarc composite additive manufacturing process of aluminum alloy[J].Welding Technology, 2016, 45: 10-13.

[18] 孙承帅,张兆栋,刘黎明.激光功率对5356 铝合金激光诱导MIG 电弧增材制造组织性能的影响[J].焊接学报,2018,39:13-18.SUN C S, ZHANG Z D, LIU L M.Effect of laser power on microstructure properties of 5356 aluminum alloy laser-induced MIG arc additive manufacturing[J].Transactions of the China Welding Institution, 2018, 39: 13-18.

[19] ZHANG C, LI G, GAO M, et al.Microstructure and process characterization of laser-cold metal transfer hybrid welding of AA6061 aluminum alloy[J].The International Journal of Advanced Manufacturing Technology, 2013, 68:1 253-1 260.

[20] BANDYOPADHYAY A,ZHANG Y N,BOSE S.Recent developments in metal additive manufacturing[J].Current Opinion in Chemical Engineering, 2020, 28: 96-104.

[21] FU R, TANG S Y, LU J P, et al.Hot-wire arc additive manufacturing of aluminum alloy with reduced porosity and high deposition rate[J].Materials & Design, 2021,199:109370.

[22] LIU P W, WANG Z, XIAO Y H, et al.Insight into the mechanisms of columnar to equiaxed grain transition during metallic additive manufacturing[J].Additive Manufacturing, 2019, 26: 22-29.

[23] QI Z W, QI B J, CONG B Q, et al.Microstructure and mechanical properties of wire +arc additively manufactured 2024 aluminum alloy components: As-deposited and post heat-treated[J].Journal of Manufacturing Processes,2019,40: 27-36.

[24] WU D J, LIU D H, NIU F Y, et al.Al-Cu alloy fabricated by novel laser-tungsten inert gas hybrid additive manufacturing[J].Additive Manufacturing, 2020, 32:100954.

[25] LIU D H, WU D J, WANG R Z, et al.Formation mechanism of Al-Zn-Mg-Cu alloy fabricated by laser-arc hybrid additive manufacturing: Microstructure evaluation and mechanical properties[J].Additive Manufacturing, 2022, 50:102554.

文章导航

/