激光与CMT-P 电弧复合增材构件的微观组织特征研究
张志强(1985-), 副教授, 博士, 主要研究方向为增材制造以及高性能焊接, E-mail: zqzhang@cauc.edu.cn;
张天刚(1978-),副教授,博士,主要研究方向为激光加工技术,E-mail:tgzhang@cauc.edu.cn
收稿日期: 2023-05-11
修回日期: 2023-06-12
录用日期: 2023-07-14
网络出版日期: 2023-10-15
基金资助
航空科学基金(2020Z049067002);天津市自然科学基金(22JCYBJC01280);中央高校基本科研业务费项目(3122023039);国家自然科学基金(51905536)资助
Study on Microstructure Characterization by Laser and CMT-P Arc Hybrid Additive Components
Received date: 2023-05-11
Revised date: 2023-06-12
Accepted date: 2023-07-14
Online published: 2023-10-15
张志强, 李涵茜, 贺世伟, 路学成, 王浩, 张天刚 . 激光与CMT-P 电弧复合增材构件的微观组织特征研究[J]. 材料保护, 2023 , 56(10) : 78 -82 . DOI: 10.16577/j.issn.1001-1560.2023.0237
Key words: laser; CMT-P; additive manufacturing; microstructure; hardness
[1] 郜庆伟,赵 健,舒凤远,等.铝合金增材制造技术研究进展[J].材料工程, 2019, 47: 32-42.GAO Q W, ZHAO J, SHU F Y, et al.Research progress in aluminum alloy additive manufacturing[J].Journal of Materials Engineering, 2019, 47: 32-42.
[2] 罗先甫, 查小琴, 夏申琳.2×××系航空铝合金研究进展[J].轻合金加工技术,2018, 46: 17-25.LUO X F,ZHA X Q,XIA S L.Research progress of 2×××series aviation aluminum alloys[J].Light Alloy Fabrication Technology, 2018, 46: 17-25.
[3] BYRON B M, PAUL G, GLEN S, et al.Metal additive manufacturing in aerospace: A review[J].Materials & Design, 2021, 10: 110008.
[4] CEM S A, VICTORIA A, SHI Z S, et al.Challenges in additive manufacturing of high-strength aluminium alloys and current developments in hybrid additive manufacturing[J].International Journal of Lightweight Materials and Manufacture, 2021, 4: 246-261.
[5] CHEN X Y,YU G, HE X L, et al.Investigation of thermal dynamics for different leading configuration in hybrid laser-MIG welding[J].Optics & Laser Technology, 2021, 134:106567.
[6] 林忠钦, 于忠奇, 戴冬华, 等.复杂高筋薄壁构件旋压-增材复合制造技术发展与展望[J].航空学报,2023, 44(9): 6-29.LIN Z Q, YU Z Q, DAI D H, et al.Development and prospect of metal spinning - additive hybrid manufacturing technology for complex thin-walled component with high ribs[J].Acta Aeronautica et Astronautica Sinica,2023, 44(9): 6-29.
[7] 陈庆宏,吕小青,徐连勇,等.P92 钢的CMT +P 焊接接头组织性能[J].焊接学报, 2018, 39(12): 110-114.CHEN Q H, LV X Q, XU L Y, et al.Microstructure and properties of CMT +P welded joints of P92 steel[J].Transactions of the China Welding Institution, 2018, 39(12):110-114.
[8] CAI H Y, XU L, ZHAO L Y, et al.Cold metal transfer plus pulse (CMT +P) welding of G115 steel:Mechanisms,microstructure, and mechanical properties[J].Materials Science and Engineering: A, 2022, 843: 143-156.
[9] 张志强, 勾青泽, 路学成, 等.高强铝合金CMT+P 电弧增材制造熔滴过渡行为研究[J].航空学报, 2023, 44(24): 427881.ZHANG Z Q, GOU Q Z, LU X C, et.al.Study on droplet transfer behavior of high strength aluminum alloy CMT +P arc additive manufacturing[J].Acta Aeronautica et Astronautica Sinica, 2023, 44(24): 427881.
[10] CONG B Q, OUYANG R J, QI B J, et al.Influence of Cold Metal Transfer Process and Its Heat Input on Weld Bead Geometry and Porosity of Aluminum-Copper Alloy Welds[J].Rare Metal Materials and Engineering, 2016, 45 (3):606-611.
[11] ZHANG Z Q, YAN J P, LU X C, et al.Optimization of porosity and surface roughness of CMT-P wire arc additive manufacturing of AA2024 using response surface methodology and NSGA-II[J].Journal of Materials Research and Technology, 2023, 24: 6 923-6 941.
[12] SALEH M K, YU Y F, LIN F.A review on additive manufacturing of Al-Cu (2xxx) aluminium alloys, processes and defects[J].Materials Science and Technology, 2021, 37:805-829.
[13] SELVI S, VISHVAKSENAN A, RAJASEKAR E.Cold metal transfer (CMT) Technology-An overview[J].Defence Technology, 2018, 14(1),28-44.
[14] GONG G H,YE J J, CHI Y M, et al.Research status of laser additive manufacturing for metal: a review[J].Journal of Materials Research and Technology,2021,15:855-884.
[15] LIU M R, MA G Y, LIU D H, et al.Microstructure and mechanical properties of aluminum alloy prepared by laserarc hybrid additive manufacturing[J].Journal of Laser Applications, 2020, 32: 022052.
[16] 庄忠良,宋 刚,祝美丽,等,激光-MIG 复合热源铝合金层间堆积快速成形[J].焊接学报,2013,34:71-74.ZHUANG Z L,SONG G,ZHU M L,et al.Laser-MIG composite heat source aluminum alloy interlayer stacking rapid prototyping[J].Transactions of the China Welding Institution, 2013, 34: 71-74.
[17] 王 鹏,张兆栋,宋 刚,等,铝合金激光-电弧复合增材制造工艺分析[J].焊接技术,2016,45:10-13.WANG P, ZHANG Z D, SONG G, et al.Analysis of laserarc composite additive manufacturing process of aluminum alloy[J].Welding Technology, 2016, 45: 10-13.
[18] 孙承帅,张兆栋,刘黎明.激光功率对5356 铝合金激光诱导MIG 电弧增材制造组织性能的影响[J].焊接学报,2018,39:13-18.SUN C S, ZHANG Z D, LIU L M.Effect of laser power on microstructure properties of 5356 aluminum alloy laser-induced MIG arc additive manufacturing[J].Transactions of the China Welding Institution, 2018, 39: 13-18.
[19] ZHANG C, LI G, GAO M, et al.Microstructure and process characterization of laser-cold metal transfer hybrid welding of AA6061 aluminum alloy[J].The International Journal of Advanced Manufacturing Technology, 2013, 68:1 253-1 260.
[20] BANDYOPADHYAY A,ZHANG Y N,BOSE S.Recent developments in metal additive manufacturing[J].Current Opinion in Chemical Engineering, 2020, 28: 96-104.
[21] FU R, TANG S Y, LU J P, et al.Hot-wire arc additive manufacturing of aluminum alloy with reduced porosity and high deposition rate[J].Materials & Design, 2021,199:109370.
[22] LIU P W, WANG Z, XIAO Y H, et al.Insight into the mechanisms of columnar to equiaxed grain transition during metallic additive manufacturing[J].Additive Manufacturing, 2019, 26: 22-29.
[23] QI Z W, QI B J, CONG B Q, et al.Microstructure and mechanical properties of wire +arc additively manufactured 2024 aluminum alloy components: As-deposited and post heat-treated[J].Journal of Manufacturing Processes,2019,40: 27-36.
[24] WU D J, LIU D H, NIU F Y, et al.Al-Cu alloy fabricated by novel laser-tungsten inert gas hybrid additive manufacturing[J].Additive Manufacturing, 2020, 32:100954.
[25] LIU D H, WU D J, WANG R Z, et al.Formation mechanism of Al-Zn-Mg-Cu alloy fabricated by laser-arc hybrid additive manufacturing: Microstructure evaluation and mechanical properties[J].Additive Manufacturing, 2022, 50:102554.
/
〈 |
|
〉 |