Email Alert  RSS
试验研究

铝粉粒径对等离子熔覆铁基合金涂层耐腐蚀性的影响

展开
  • 1西安工业大学材料与化工学院; 2陆军驻大同代表室; 3山西柴油机工业有限责任公司
高培虎(1979-),教授,博士,从事材料研发、加工及表面防护相关研究,电话:15229226564,E-mail:tigergaopei@163.com

收稿日期: 2023-04-18

  修回日期: 2023-05-06

  录用日期: 2023-06-14

  网络出版日期: 2023-10-15

基金资助

国家自然科学基金项目(51771140);陕西省高校青年创新团队(金属腐蚀防护与表面工程技术,发动机关键部件材料研发及应用);陕西省重点研发计划项目(2019ZDLGY05-09);陕西省自然基金项目(2023-JC-YB-380);陕西省教育厅服务地方计划专项项目(19JC022)资助

Effect of Aluminum Powder Size on the Corrosion Resistance of Plasma Cladded Iron-Based Alloy Coatings

Expand
  • (1.School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China;2.Representative Office in Datong, PLA, Datong 037036, China; 3.Shanxi Diesel Engine Industry Co., Ltd., Datong 037036, China)

Received date: 2023-04-18

  Revised date: 2023-05-06

  Accepted date: 2023-06-14

  Online published: 2023-10-15

摘要

铝具有一定的化学活性,与氧发生反应后易形成致密的氧化膜,可有效阻碍样品的进一步深入氧化,起到很好的氧阻断保护作用,常用作阴极保护材料。 在铁基合金涂层中引入铝可提高铁基合金涂层的耐蚀性,因此在等离子熔覆铁基涂层中加入不同粒径铝粉,研究其粒径大小对等离子熔覆铁基涂层组织形貌及耐蚀性的影响,分析其对熔覆层耐蚀性的影响机制。 研究发现:铁基熔覆层与基体具有良好的冶金结合,熔覆层并未产生明显的裂纹及气孔。 随着铝粉粒径(100~200,200~300,300~400,400~500 目)的减小,熔覆层内部的黑色AlN 相粒径也在减小,且分布更加均匀。 熔覆层在3.5%NaCl 溶液中均呈现出明显的钝化行为,自腐蚀电位分别为-0.665、-0.706、-0.752、-0.822 V,均高于基体的-0.883 V,自腐蚀电流密度分别为2.454×10-6、6.313×10-6、7.979×10-6、9.710×10-6 A/cm2,均低于基体的3.323×10-5A/cm2。 随着铝粉粒径的增大,熔覆层的耐蚀性逐渐增强,铝粉粒径在100~200 目时所得到的熔覆层耐蚀性最好,且熔覆层耐蚀性均优于基体材料。

本文引用格式

党国栋, 刘继林, 高培虎, 张世吾, 闫志义, 张丽娜, 陈白阳, 付瑞涛, 李起保, 金灿, 范虎 . 铝粉粒径对等离子熔覆铁基合金涂层耐腐蚀性的影响[J]. 材料保护, 2023 , 56(10) : 83 -91 . DOI: 10.16577/j.issn.1001-1560.2023.0238

Abstract

Aluminum has a certain chemical activity, and easily forms a dense oxide film after the reaction with oxygen which can effectively prevent the sample from further deep oxidation, playing good oxygen-blocking protection, commonly used as cathodic protection material.By introducing aluminum into iron-based alloy coatings, the corrosion resistance of these coatings can be enhanced.In this research, different particle sizes of aluminum powder were incorporated into plasma cladded iron-based coatings to investigate the influence of particle size on the microstructure, morphology and corrosion resistance of the coatings.The underlying mechanisms affecting the corrosion resistance of the clad layers were also analyzed.Results showed that the iron-based clad layer had good metallurgical bonding with the substrate and the clad layer did not produce obvious cracks and pores.As the particle size of the aluminum powder (100~200 mesh, 200~300 mesh, 300~400 mesh, 400~500 mesh) decreased, the size of the black AlN phase within the overlay also reduced, resulting in a more uniform distribution.All overlays displayed pronounced passivation behavior in a 3.5%NaCl solution.The self-corrosion potentials were-0.665,-0.706,-0.752 and-0.822 V, which were higher than that of the substrate (-0.883 V), and the self-corrosion current densities were 2.454×10-6, 6.313×10-6, 7.979×10-6 and 9.710×10-6 A/cm2, which were lower than that of the substrate 3.323×10-5 A/cm2.As the particle size of aluminum powder increased, the corrosion resistance of the clad layer gradually increased, and the best corrosion resistance of the clad layer was obtained when the particle size of aluminum powder was 100~200 mesh, and the corrosion resistance of the clad layer was better than the base material.

参考文献

[1] 陈 东,李忠盛,吴护林,等.冷喷涂纯铝涂层耐腐蚀性能研究[J].表面技术, 2016, 45(12): 174-179.CHEN D, LI Z S, WU H L, et al.Corrosion Resistance of Cold Sprayed Pure Al Coating[J].Surface Technology,2016, 45(12):174-179.

[2] 石仲川,张晓云,陈 昊,等.高强钢冷喷涂铝锌复合涂层性能研究[J].材料工程, 2015, 43(2): 14-19.SHI Z C, ZHANG Y Y, CHEN H, et al.Properties of Cold Spray Al/Zn Coatings on High-Strength Steel[J].Journal of Materials Engineering, 2015, 43(2):14-19.

[3] 赵超山,杨 洋,亢淑梅,等.316L 不锈钢在电解液中的耐蚀性能研究[J].材料保护,2022,55(3):47-52.ZHAO C S, YANG Y, KANG S M, et al.Study on Corrosion Resistance of 316L Stainless Steel in Electrolyte[J].Materials Protection, 2022, 55(3):47-52.

[4] 侯 悦,田 原,赵志鹏,等.海洋工程用铝合金的腐蚀与防护研究进展[J].表面技术,2022,51(5):1-14.HOU Y, TIAN Y, ZHAO Z P, et al.Corrosion and Protection of Aluminum Alloy for Marine Engineering[J].Surface Technology, 2022, 51(5):1-14.

[5] 房豪杰,曲 华,杨黎晖,等.9C 系列粉末冶金高耐蚀铝合金腐蚀行为研究[J].中国腐蚀与防护学报, 2021, 41(6): 775-785.FANG H J,QU H,YANG L H,et al.Corrosion Behavior of 9C Series of Powder Metallurgy Al-Alloy with High Corrosion Resistance[J].Journal of Chinese Society for Corrosion and Protection, 2021, 41(6):775-785.

[6] 赵 野,何 壮,石文龙,等.317L 不锈钢在模拟海洋环境中的耐蚀性能研究[J].材料保护,2021,54(5):51-56.ZHAO Y, HE Z, SHI W L, et al.Corrosion Resistance of 317L Stainless Steel in Simulated Marine Environment[J].Materials Protection,2021,54(5):51-56.

[7] 唐明奇,李 刚,冯在强,等.原位合成AlN-Fe3Al 增强铁基等离子熔覆层结构及性能[J].表面技术, 2018, 47(11): 218-224.TANG M Q, LI G, FENG Z Q, et al.Structure and Properties of In Situ Synthesized AlN-Fe3Al Reinforced Fe-Base Plasma Cladding Coating[J].Surface Technology,2018,47(11):218-224.

[8] 张庆辉,沈喜训,成旦红,等.Ni-AlN 纳米复合镀层的制备及耐蚀性能研究[J].电镀与精饰, 2016, 38(12): 1-5.ZHANG Q H, SHEN X X, CHENG D H, et al.Electrodeposition Preparation and Corrosion Resistant Behavior of Ni-AlN Nanocomposite Coatings[J].Plating and Finishing,2016, 38(12):1-5.

[9] 李 鹏,黄新民,郑华明,等.电沉积Cu-纳米AlN 复合涂层的耐腐蚀性研究[J].金属功能材料, 2010, 17(4):38-40.LI P, HUANG X M, ZHENG H M, et al.Study on Corrosion Resistance of Cu-nano AlN Coating[J].Metallic Functional Materials, 2010, 17(4):38-40.

[10] 孙晓东,彭竹琴,李俊魁,等.不锈钢等离子熔覆镍基复合涂层的组织与性能[J].中原工学院学报, 2016, 27(6):58-62.SUN X D, PENG Z Q, LI J K, et al.Microstructure and Performance of Nickel Based Alloy Plasma Coating on Stainless Steel[J].Journal of Zhongyuan Institute of Technology,2016, 27(6):58-62.

[11] LI W, KONG D J.Effect of Y2O3 mass fraction on electrochemical corrosion performances of laser cladded CrNi coatings in 3.5%NaCl solution[J].Anti - Corrosion Methods and Materials, 2022, 69(2): 171-176.

[12] MOHAMMADKHANI S, JAJARMI S, NASIRI H, et al.Applying FeAl coating on the low carbon steel substrate through self-propagation high temperature synthesis (SHS)process[J].Surface and Coatings Technology, 2016, 286:383-387.

[13] 邹艳明,钟叶清,肖梦琼,等.含Ni 变形锌铝合金的耐蚀性能研究[J].材料保护,2020,53(8):48-54.ZHOU Y M, ZHONG Y Q, XIAO M Q, et al.Study on Corrosion Resistance of Deformed ZAT10 Zinc-Aluminum Containing Ni[J].Materials Protection, 2020, 53(8):48-54.

[14] 胡丽华,吴 露,金 杰,等.高含CO2 环境下316L 及2205 不锈钢的耐蚀性研究[J].材料保护,2022,55(9):55-61.HU L H, WU L, JIN J, et al.Corrosion Resistance of 316L and 2205 Stainless Steel in High CO2 Environment[J].Materials Protection,2022,55(9):55-61.

[15] PING H, RUI S, LI X J ,et al.Influence of concentrations of chloride ions on electrochemical corrosion behavior of titanium-zirconium-molybdenum alloy[J].Journal of Alloys and Compounds, 2017,708: 367-372.

[16] WAJCI S.Principles of Electrochemistry Applied to Corrosion[J].Materials Performance, 2007, 46(3):80.

[17] 冯晓甜,顾 宏,周圣丰,等.送粉式激光增材制造TC4钛合金熔覆层组织及电化学腐蚀行为的研究[J].中国激光, 2019, 46(3):44-53.FENG X T, GU H, ZHOU S F, et al.Microstructure and Electrochemical Corrosion Behavior of TC4 Titanium Alloy Cladding Layer with Powder Feeding Laser Additive Manufacturing[J].Chinese Journal of Lasers, 2019, 46(3):44-53.

[18] GAO P H, FU R T, CHEN B Y, et al.Corrosion Resistance of CoCrFeNiMn High Entropy Alloy Coating Prepared through Plasma Transfer Arc Claddings[J].Metals, 2021,11(11): 1876.

[19] MUHAMMAD S, LI J L, SIDDIQUI M, et al.Electrochemical Corrosion Behavior of CoCrNi Medium Entropy Alloy and SUS-304 Stainless Steel Diffusion Welded Joints at Various Bonding Temperatures[J].Physics of Metals and Metallography, 2022, 122(14): 1 561-1 571.

[20] GUO Y, CHEN Z H, YIN X S, et al.Effect of the passive films on CaCO3 scale depositing on Q235 steel: Electrochemical and surface investigation[J].Journal of Colloid And Interface Science, 2022, 611: 172-182.

[21] KONG W C, LI K, HU J, et al.Immersion corrosion behavior, electrochemical performance and corrosion mechanism of subsonic flame sprayed FeCoCrMoSi amorphous coating in 3.5%NaCl solution[J].International Journal of Hydrogen Energy, 2022, 47(10): 6 911-6 923.

[22] XING X G, WANG H F, LU P N, et al.Influence of rare earths on electrochemical corrosion and wear resistance of RE-Cr/Ti pack coatings on cemented 304 stainless steel[J].Surface and Coatings Technology, 2016, 291:151-160.

[23] LEE J, KIM M, KIM S, et al.Electrochemical Corrosion Characteristics of Arc-Ion-Plated AlTiN Coating for Marine Application[J].Journal of Nanoscience and Nanotechnology, 2016, 16(2): 1 728-1 731.

[24] TANG M Q, WANG W, LI G, et al.Electrochemical Corrosion Behaviors of TiC Particles Reinforced Fe-Based Composite Plasma Cladding Layers[J].International Journal of Electrochemical Science, 2019, 14(2): 1 591-1 600.

[25] POTGIETER J, WHITEFIEID D, MOTSUMI V.Electrochemical Corrosion Behaviour of Different Grades of WCCo, High-Cr White Cast Irons and Hadfield Steel in 1 M Sulphuric Acid[J].Materials, 2021, 14(20): 6 130.

文章导航

/