Email Alert  RSS
试验研究

CoMoCrNi 真空熔覆涂层的组织和性能研究

展开
  • 1佳木斯大学材料科学与工程学院; 2教育部金属耐磨材料及表面技术工程研究中心; 3宣达实业集团
贾克明(1991-),工学硕士,主要研究方向为金属材料成型及表面技术,电话: 16645430664,E-mail: jiakeming@126.com

收稿日期: 2023-04-27

  修回日期: 2023-05-21

  录用日期: 2023-06-12

  网络出版日期: 2023-10-15

基金资助

黑龙江省省属高等学校基本科研业务费科研项目(2018-KYYWF-0924);黑龙江省自然科学基金项目(LH2020E024);国家级大学生创新创业训练计划项目(202310222129);佳木斯大学优秀学科团队项目(JDXKTD-2019001)资助

Study on Microstructure and Properties of CoMoCrNi Coating Prepared by Vacuum Cladding

Expand
  • (1.School of Materials Science and Engineering, Jiamusi University, Jiamusi 154007, China;2.Engineering Research Center for Metal Wear Resistant Materials and Surface Technology, Ministry of Education, Jiamusi 154007, China;3.Xuanda Industrial Group, Wenzhou 325105, China)

Received date: 2023-04-27

  Revised date: 2023-05-21

  Accepted date: 2023-06-12

  Online published: 2023-10-15

摘要

为了提高38CrMoAl 钢基体的耐磨抗蚀性能,以CoMoCrNi 合金粉末为研究对象,将其与特制的粘结剂混合后涂覆在38CrMoAl 钢基体材料表面,通过真空熔覆制备了CoMoCrNi 涂层,通过XRD、SEM 及其附带的EDS仪、硬度测试、磨粒磨损试验、酸性盐雾试验和电化学腐蚀试验考察了涂层的组织及综合性能。 结果表明:制备的CoMoCrNi 涂层表面平整,具有金属光泽;涂层由Co 基固溶体和Co3Mo2Si 硬质Laves 相构成,且组织细小均匀致密;CoMoCrNi 涂层与基体间形成牢固的冶金结合。 基体/涂层的显微维氏硬度呈梯度分布规律,涂层内存在弥散分布的硬质相,其显微硬度远高于基体。 CoMoCrNi 涂层的耐磨性和耐腐蚀性均高于基体材料。 此外,与目前主流的激光熔覆、堆焊等表面加工技术制备的自熔性钴基合金涂层相比,真空熔覆法制备的CoMoCrNi 涂层表现出更加优异的耐磨抗蚀性。 涂层的综合承载能力更强,可望应用于复杂工况中。

本文引用格式

贾克明, 胡明, 于海成, 焦玉凤, 刘金龙, 宋小刚 . CoMoCrNi 真空熔覆涂层的组织和性能研究[J]. 材料保护, 2023 , 56(10) : 92 -98 . DOI: 10.16577/j.issn.1001-1560.2023.0239

Abstract

For improving the wear resistance and corrosion resistance of 38CrMoAl steel substrate, CoMoCrNi alloy powder was used as the research object to be mixed with a special binder and coated on the surface of 38CrMoAl steel substrate,and subsequently,the CoMoCrNi coating was prepared by vacuum cladding.The structure and comprehensive performance of the coating were investigated through XRD, SEM and its accompanying EDS instrument, hardness test, abrasive wear test, acidic salt spray test and electrochemical corrosion test.Results showed that the as-prepared CoMoCrNi coating had the smooth surface with metallic luster.The coating was composed of Co-based solid solution and Co3Mo2Si hard Laves phase, and the structure was fine, uniform and dense.In addition, a strong metallurgical bond was formed between the CoMoCrNi coating and the substrate.The micro-Vickers hardness of the substrate/coating exhibited a gradient distribution pattern, and there were dispersed hard phases in the coating,which had a much higher microhardness than the substrate.The wear resistance and corrosion resistance of CoMoCrNi coating were higher than those of the base material.Furthermore, compared with the self-fluxing cobalt-based alloy coatings prepared by current mainstream surface processing technologies such as laser cladding and surfacing welding, the CoMoCrNi coating prepared by the vacuum cladding method showed better wear resistance and corrosion resistance.In general, the coating possessed a stronger comprehensive load-bearing capacity, which could be expected to be used in complex working conditions.

参考文献

[1] 王军军, 杨贵荣, 宋文明, 等.真空熔覆WC/h-BN/Ni复合涂层的组织及物相分析[J].材料热处理学报,2022, 43(9): 165-175.WANG J J, YANG G R, SONG W M, et al.Microstructure and Phase Analysis of WC/h - BN/Ni Composite Coating Fabricated by Vacuum Cladding[J].Transactions of Materials and Heat Treatment, 2022, 43(9): 165-175.

[2] HAN C F, ZHANG X D, SUN Y F.Microstructure and Properties of NiFeCrBSi/WC Composite Coatings Fabricated by Vacuum Cladding[J].Physics of Metals and Metallography, 2019, 120(9): 898-906.

[3] 李尚平, 骆合力, 曹 栩, 等.铸态T800 合金及其焊层的组织和高温耐磨性能[J].稀有金属材料与工程,2013, 42(3): 603-606.LI S P, LUO H L, CAO X, et al.Microstructure and High-Temperature Fretting Wear Behavior of T800 Alloy in Casting and Cladding State[J].Rare Metal Materials and Engineering, 2013, 42(3): 603-606.

[4] 游晓红, 王刚刚, 王 军, 等.固溶处理对热压CoCrW合金组织及力学性能的影响[J].金属学报, 2016, 52(2): 161-167.YOU X H, WANG G G , WANG J, et al.Effect of Solid Solution Treatment on Microstructure and Mechanical Properties of Hot-Press CoCrW Alloys[J].Acta Metallurgica Sinica, 2016, 52(2): 161-167.

[5] 杨贵荣,宋文明,王建儒,等.添加碳化钨和石墨改善真空熔覆Ni-Co 基合金涂层的极化行为[J].材料导报,2018, 32(6): 924-929.YANG G R, SONG W M, WANG J R, et al.The Addition of WC and Graphite Improves Polarization Behavior of Ni-Co-Based Alloy Coatings Fabricated by Vacuum Fusion Sintering[J].Materials Reports, 2018, 32(6): 924-929.

[6] 黄新波.真空熔覆Ni 基合金-碳化钨和Co 基合金-碳化钨复合涂层的制备及性能研究[D].西安: 西安电子科技大学, 2005.HUANG X B.Study on Preparation and Properties of Vacuum Fusion Sintered WC/Ni and WC/Co Composite Coatings[D].Xi’an: Xidian University, 2005.

[7] 刘永雄, 陈 欣, 尹付成, 等.Co-Mo-Cr-Si 合金组织及其耐铝液腐蚀性能[J].中国有色金属学报, 2018, 28(10): 2 033-2 042.LIU Y X, CHEN X, YIN F C, et al.Microstructure and Corrosion Resistance in Liquid Al Bath of Co-Mo-Cr-Si Alloys[J].The Chinese Journal of Nonferrous Metals, 2018,28(10): 2 033-2 042.

[8] 余永言.粉末冶金制备Co-Cr 合金的工艺及其组织演变[D].宜昌: 三峡大学, 2019.YU Y Y.Process and Organization Evolution of Co-Cr Alloy Prepared by Powder Metallurgy[D].Yichang:China Three Gorges University, 2019.

[9] 陶洪伟, 林 晨, 陶红芳, 等.熔烧状态对Co 基合金涂层显微结构及硬度的影响[J].金属热处理, 2013, 38(5): 79-82.TAO H W, LIN C, TAO H F, et al.Effect of melting state on microstructure and microhardness of Co-based alloy coating[J].Heat Treatment of Metals, 2013, 38(5): 79-82.

[10] 苏科勇, 张 明, 王文慧, 等.真空熔覆WC 颗粒增强镍基合金涂层的组织与性能[J].材料保护, 2018, 51(11): 80-83.SU K Y, ZHANG M, WANG W H, et al.Structure and Property of WC Particles Reinforced Nickel - Based Alloy Coating Prepared by Vacuum Cladding[J].Materials Protection, 2018, 51(11): 80-83.

[11] 李明喜,修俊杰,赵庆宇,等.钼对钴基合金激光熔覆层组织与耐磨性的影响[J].焊接学报, 2009, 30(11):17-20.LI M X, XIU J J, ZHAO Q Y, et al.Effect of Mo Content on Microstructure and Wear Resistance of Co-based Coatings by Laser Cladding[J].Transactions of the China Welding Institution, 2009, 30(11): 17-20.

[12] YUAN Z, YAN H, ZHANG P L, et al.Improving surface resistance to wear and corrosion of nickel aluminum bronze by laser-clad TaC/Co-based alloy composite coatings[J].Surface and Coatings Technology, 2021, 49(5): 405-414.

[13] 李 响,来佑彬,于 锦,等.高能束熔覆制备耐磨涂层技术研究现状与展望[J].表面技术, 2021, 50(2):134-147.LI X, LAI Y B, YU J, et al.Research Status and Prospect of Wear-resistant Coating Prepared by High Power Density Beam Cladding[J].Surface Technology, 2021, 50(2):134-147.

[14] WANG X Y, JU P F, LU X P, et al.Influence of Cr2O3 particles on corrosion, mechanical and thermal control properties of green PEO coatings on Mg alloy[J].Ceramics International, 2022, 48(3): 3 615-3 627.

[15] SINGH P, KUMAR G D, BANSAL A.Electrochemical corrosion and erosive wear behaviour of microwave processed WC-10Co4Cr clad on SS-316[J].Materials Today: Proceedings, 2022, 50(5): 1 900-1 905.

[16] 李洁翡, 尹付成, 刘永雄, 等.Si 对FeMoCrNi 高温耐磨合金的组织和抗氧化性能的影响[J].中国有色金属学报, 2015, 25(11): 3 084-3 091.LI J F, YIN F C, LIU Y X, et al.Effect of Si on Microstructures and Oxidation Resistance of FeMoCrNi High Temperature Wear-Resistance Alloys[J].The Chinese Journal of Nonferrous Metals, 2015, 25(11): 3 084-3 091.

[17] 刘 新, 杨成明, 邬移华.Si 对Fe-Mo-Cr-Ni 合金组织及耐熔体腐蚀性能的影响[J].热加工工艺, 2019, 48(16): 61-64.LIU X, YANG C M, WU Y H.Effects of Silicon on Microstructure and Corrosion-Resistance in Melts of Fe-Mo-Cr-Ni Alloy[J].Hot Working Technology, 2019, 48(16): 61-64.

[18] 范 俊, 杨 超, 刘志强, 等.超音速火焰喷涂WC-Co-Ni 涂层电化学腐蚀行为研究[J].化学研究与应用,2020, 32(9): 1 547-1 551.FAN J, YANG C, LIU Z Q, et al.Electrochemical corrosion behavior of HVOF sprayed WC-Co-Ni coatings[J].Chemical Research and Application, 2020, 32(9): 1 547-1 551.

[19] 王建儒, 杨贵荣, 宋文明, 等.ZG45 钢表面镍钴基熔覆层的显微组织与耐腐蚀性能[J].机械工程材料, 2018,42(2): 88-94.WANG J R,YANG G R,SONG W M,et al.Microstructure and Corrosion Resistance of Ni-Co Based Cladding Layers on Surface of ZG45 Steel[J].Materials for Mechanical Engineering, 2018, 42(2): 88-94.

[20] 于诗晴, 田 云, 郑博文, 等.温度对Stellite6 与Stellite21 合金堆焊层组织与性能的影响[J/OL].热加工工艺, 2022: 1-6【2023-04-27】.https:/ /kns.cnki.net/kcms/detail/61.1133.tg.20221021.0929.008.html.DOI:10.14158/j.cnki.1001-3814.20213493.YU S Q, TIAN Y, ZHENG B W, et al.Effect of Temperature on Microstructure and Propertiesof Stellite6 and Stellite21 Alloys Surfacing Layer[J/OL].Hot Working Technology, 2022: 1-6【2023-04-27】.https:/ /kns.cnki.net/kcms/detail/61.1133.tg.20221021.0929.008.html.DOI:10.14158/j.cnki.1001-3814.20213493.

文章导航

/