Email Alert  RSS
试验研究

激光熔覆制备Fe-30Mn-xCu合金的性能研究

展开
  • 南华大学机械工程学院
赵颖超(1985-),博士,主要研究方向为生物材料的性能,电话:13739058599,E-mail:2020000102@usc.edu.com

收稿日期: 2023-06-22

  修回日期: 2023-07-12

  录用日期: 2023-08-10

  网络出版日期: 2023-10-15

Study on Properties of Fe-30Mn-xCu Alloy Prepared by Laser Cladding

Expand
  • (School of Mechanical Engineering, University of South China, Hengyang 421001, China)

Received date: 2023-06-22

  Revised date: 2023-07-12

  Accepted date: 2023-08-10

  Online published: 2023-10-15

摘要

为了进一步探究骨植入物用可降解金属铁锰合金的降解行为,采用激光熔覆技术制备Fe-30Mn-xCu(x =0,4%,6%,8%,10%,12%,质量分数)可生物降解骨替代合金,并通过光学显微镜、扫描电镜及其附带的能谱仪、X 射线衍射仪、显微硬度计、电子万能试验机、高温摩擦磨损试验仪和电化学工作站等探讨了铜含量的变化对合金微观结构、力学性能及生物降解行为的影响。 结果表明:铜的含量对合金的晶粒尺寸、硬度、强度、摩擦磨损性能、降解速率的影响均较大。 随着铜含量的升高,晶粒尺寸减小,硬度上升,极限抗压强度上升,耐磨性先增强后减弱,降解速率先增加后下降,在10%铜时,耐磨性最好,铜含量6%时,降解速率最大。

本文引用格式

陈观平, 彭如恕, 赵颖超 . 激光熔覆制备Fe-30Mn-xCu合金的性能研究[J]. 材料保护, 2023 , 56(10) : 99 -106 . DOI: 10.16577/j.issn.1001-1560.2023.0240

Abstract

In order to further explore the degradation behavior of degradable metal iron-manganese alloys for bone implants, laser cladding technology was used to prepare Fe-30Mn-xCu (x =0, 4%, 6%, 8%, 10%, 12%, mass fraction, the same below) biodegradable bone replacement alloy.The effects of changes in copper content on the microstructure, mechanical properties and biodegradation behavior of the alloy were discussed through optical microscopes, scanning electron microscopes and their accompanying energy spectrometers, X-ray diffractometers, microhardness testers, electronic universal testing machines, high-temperature friction and wear testers and electrochemical workstations,etc.Results showed that the copper content had greater effects on the alloy’s grain size, hardness, strength, friction and wear properties, and degradation rate.When Cu content increased, the grain size decreased, the hardness and the ultimate compressive strength increased, the wear resistance and biodegradation rate firstly increased and then decreased.Moreover, the alloy prepared with 10%Cu had the best wear resistance, and the allow with 6%Cu possessed the maximum biodegradation rate.

参考文献

[1] SHUAI C, WANG B, YANG Y, et al.3D honeycomb nanostructure-encapsulated magnesium alloys with superior corrosion resistance and mechanical properties[J].Composites Part B: Engineering, 2019, 162: 611-620.

[2] ZHENG Y F, GU X N, WITTE F.Biodegradable metals[J].Materials Science and Engineering: R: Reports,2014, 77: 1-34.

[3] WANG Y.Bioadaptability: an innovative concept for biomaterials[J].Journal of Materials Science & Technology,2016, 32(9): 801-809.

[4] WANG C, YANG H T, LI X, et al.In vitro evaluation of the feasibility of commercial Zn alloys as biodegradable metals[J].Journal of Materials Science & Technology, 2016,32(9): 909-918.

[5] HOU L D, LI Z, PAN Y, et al.A review on biodegradable materials for cardiovascular stent application[J].Frontiers of Materials Science, 2016, 10(3): 238-259.

[6] CHENG J, HUANG T, ZHENG Y F.Microstructure, mechanical property, biodegradation behavior, and biocompatibility of biodegradable Fe-Fe2O3 composites[J].Journal of Biomedical Materials Research Part A, 2014, 102(7):2 277-2 287.

[7] ALLENSTEIN U, MA Y, ARABI-HASHEMI A, et al.Fe-Pd based ferromagnetic shape memory actuators for medical applications: Biocompatibility, effect of surface roughness and protein coatings[J].Acta Biomaterialia, 2013, 9(3): 5 845-5 853.

[8] 李昱龙.激光增材制造铁基骨植入物的降解及生物学性能研究[D].赣州:江西理工大学, 2021.LI Y L.Study on degradation and biological properties of iron-based bone implants manufactured by laser additive[D].Ganzhou: Jiangxi University of Science and Technology, 2021.

[9] SIKORA E.A quest for the holy grail of bioimplants-a review of recent developments in biodegradable metals for medical applications[J].Recent Patents on Corrosion Science, 2012, 2(2): 81-97.

[10] MD YUSOP A H, AL SAKKAF A, NUR H.Modifications on porous absorbable Fe-based scaffolds for bone applications: a review from corrosion and biocompatibility viewpoints[J].Journal of Biomedical Materials Research Part B:Applied Biomaterials, 2022, 110(1): 18-44.

[11] PEUSTER M, WOHLSEIN P, Brügmann M, et al.A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal—results 6~18 months after implantation into New Zealand white rabbits [J].Heart, 2001, 86(5): 563-569.

[12] 李 涵.Fe-35Mn 合金的喷射沉积制备及其医用性能的研究[D].上海:上海交通大学, 2018.LI H.Study on preparation and medical properties of Fe-35Mn alloy by jet deposition [D].Shanghai: Shanghai Jiao Tong University, 2018.

[13] LIU P, ZHANG D, DAI Y, et al.Microstructure, mechanical properties, degradation behavior, and biocompatibility of porous Fe-Mn alloys fabricated by sponge impregnation and sintering techniques[J].Acta Biomaterialia, 2020, 114:485-496.

[14] SCHINHAMMER M, Hänzi A C, Löffler J F, et al.Design strategy for biodegradable Fe-based alloys for medical applications[J].Acta Biomaterialia,2010,6(5):1 705-1 713.

[15] LIU P, WU H, LIANG L, et al.Microstructure, mechanical properties and corrosion behavior of additively-manufactured Fe-Mn alloys[J].Materials Science and Engineering:A, 2022, 852: 143585.

[16] HERMAWAN H, PURNAMA A, DUBE D, et al.Fe-Mn alloys for metallic biodegradable stents: degradation and cell viability studies[J].Acta Biomaterialia, 2010, 6(5):1 852-1 860.

[17] 徐文利, 陆 喜, 谭丽丽, 等.新型生物可降解Fe-30Mn-1C 合金的性能研究[J].金属学报, 2011, 47(10): 1 342-1 347.XU W L, LU X, TAN L L, et al.Study on Properties of New Biodegradable Fe-30Mn-1C alloy [J].Acta Metalica Sinica, 2011, 47(10): 1 342-1 347.

[18] LIU B, ZHENG Y F, RUAN L.In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material[J].Materials Letters, 2011, 65(3):540-543.

[19] LIU R Y,HE R G,XU L Q,et al.Design of Fe-Mn-Ag alloys as potential candidates for biodegradable metals[J].Acta Metallurgica Sinica (English Letters), 2018, 31(6):584-590.

[20] HONG D,CHOU D T,VELIKOKHATNYI O I,et al.Binder-jetting 3D printing and alloy development of new biodegradable Fe - Mn - Ca/Mg alloys[J].Acta Biomaterialia,2016, 45: 375-386.

[21] SCHINHAMMER M, PECNIK C M, RECHBERGER F,et al.Recrystallization behavior, microstructure evolution and mechanical properties of biodegradable Fe-Mn-C(-Pd)TWIP alloys[J].Acta Materialia, 2012, 60(6/7): 2 746-2 756.

[22] 朱红梅, 谭超林, 匡同春, 等.低温水冷下AZ80 镁合金表面激光熔覆Al63Cu27Zn10涂层的组织与性能[J].中国激光, 2015, 42(10): 1003005-1.ZHU H M, TAN C L, KUANG T C, et al.Microstructure and properties of Al63 Cu27 Zn10 coating on AZ80 magnesium alloy Surface by laser cladding under Low temperature water cooling [J].Chinese Journal of Lasers, 2015, 42(10):1003005-1.

[23] 邓志强,石世宏,周 斌,等.不等高弯曲弧形薄壁结构激光熔覆成形[J].中国激光, 2017, 44(9): 0902005.DENG Z Q, SHI S H, ZHOU B, et al.Laser cladding of curved thin wall structure with unequal height bending[J].Chinese Journal of Lasers, 2017, 44(9): 0902005.

[24] 朱红梅, 李勇作, 张振远, 等.激光熔覆制备马氏体/铁素体双相不锈钢层的力学与腐蚀性能研究[J].中国激光, 2018, 45(12): 1202012.ZHU H M, LI Y Z, ZHANG Z Y, et al.Study on mechanical and corrosion properties of Martensitic/ferrite duplex stainless steel layer prepared by laser cladding [J].Chinese Journal of Lasers, 2018, 45(12): 1202012.

[25] CHUANG C M, LIN K L.Effect of microelements addition on the interfacial reaction between Sn-Ag-Cu solders and the Cu substrate[J].Journal of Electronic Materials, 2003, 32(12): 1 426-1 431.

[26] DARGUSCH M S,DEHGHAN-MANSHADI A,SHAHBAZI M, et al.Exploring the role of manganese on the microstructure, mechanical properties, biodegradability, and biocompatibility of porous iron-based scaffolds[J].ACS Biomaterials Science & Engineering, 2019, 5(4): 1 686-1 702.

[27] 刘若愚.铁基合金的体外降解行为及生物相容性研究[D].重庆:西南大学, 2019.LIU R Y.Study on in vitro degradation behavior and biocompatibility of Iron-based alloys [D].Chongqing: Southwest University, 2019.

[28] GAO C, YAO M, LI S, et al.Highly biodegradable and bioactive Fe-Pd-bredigite biocomposites prepared by selective laser melting[J].Journal of Advanced Research,2019,20: 91-104.

[29] GUO Y,ZHAO M C,XIE B,et al.In vitro corrosion resistance and antibacterial performance of novel Fe-xCu biomedical alloys prepared by selective laser melting[J].Advanced Engineering Materials, 2021, 23(4): 2001000.

文章导航

/