Email Alert  RSS
试验研究

316L不锈钢在Cl-和HCO3-协同作用下的腐蚀行为研究

展开
  • 1辽宁石油化工大学石油天然气工程学院; 2抚顺石化公司乙烯化工厂; 3辽河油田庆阳勘探开发分公司
谢 飞(1983-),博士研究生,主要研究方向为管道腐蚀与防护,电话:13942359915,E-mail:xiefei0413@163.com

收稿日期: 2023-04-17

  修回日期: 2023-05-10

  录用日期: 2023-06-20

  网络出版日期: 2023-10-15

Study of the Corrosion Behavior of 316L Stainless Steel under the Synergistic Effect of Cl- and HCO3-

Expand
  • (1.College of Petroleum and Natural Gas Engineering, Liaoning Petrochemical University, Fushun 113001, China;2.Fushun Petrochemical Company Ethylene Chemical Plant, Fushun 113004, China;3.Liaohe Oilfield Qingyang Exploration and Development Branch, Qingyang 745000, China)

Received date: 2023-04-17

  Revised date: 2023-05-10

  Accepted date: 2023-06-20

  Online published: 2023-10-15

摘要

为了探明Cl和HCO3-协同作用下对316L 不锈钢的腐蚀行为的影响,通过交流阻抗(EIS)和循环极化曲线技术考察了不同Cl以及HCO3-浓度(其中Cl浓度梯度为0,0.030 0,0.051 5,0.070 0 mol/L,HCO3-浓度梯度为0.01,0.03,0.05 mol/L)对316L 在辽河油田地下水环境模拟液中的电化学腐蚀行为的影响情况,并结合金相显微镜对试件腐蚀形貌进行表征,利用X 射线光电子能谱(XPS)分析确定其产物成分。 结果表明:随着Cl浓度的增大容抗弧直径减小,弥散指数降低,点蚀电位降低,腐蚀情况加剧;而随着HCO3-浓度的增大,容抗弧的直径增大,弥散指数升高,点蚀电位升高,316L 的腐蚀减缓。 这是由于Cl会破坏316L 表面的钝化膜,而HCO3-会与基体反应形成一层致密的FeCO3保护膜。

本文引用格式

高毓, 谢飞, 赵猛, 王孝磊 . 316L不锈钢在Cl-和HCO3-协同作用下的腐蚀行为研究[J]. 材料保护, 2023 , 56(10) : 107 -114 . DOI: 10.16577/j.issn.1001-1560.2023.0241

Abstract

In order toinvestigatethe synergistic effectof Cl and HCO3 onthecorrosion behavior of 316L stainlesssteel, the effectsof differentCl concentrations(0, 0.0300, 0.0515and 0.070 0 mol/L) andHCO3concentrations (0.01, 0.03 and 0.05 mol/L) on the electrochemical corrosion behavior of 316L in groundwater environment simulation fluid in Liaohe Oilfield were evaluated by electrochemical impedance spectroscopy (EIS) and cyclic polarization curve technology.Moreover, the corrosion morphology of the specimen was characterized using a metallographic microscope, and the product composition was determined using X-ray photoelectron spectroscopy (XPS).Results showed that as the Cl concentration increased, the capacitive arc diameter decreased,the dispersion index decreased,the pitting corrosion potential decreased,and the corrosion situation intensified.In comparisons, as the HCO3 concentration increased, the diameter of the capacitive arc increased, the dispersion index increased, the pitting corrosion potential increased, and the corrosion of 316L slowed down.This was due to the fact that Clwould destroy the passivation film on the surface of 316L, and HCO3 would react with the substrate to form a dense FeCO3 protective film.

参考文献

[1] 杨化光,张四乾,王加一,等.采油工程在油田开发中面临的问题与治理措施[J].中国石油和化工标准与质量,2021,41(20):146-147.YANG H G,ZHANG S Q,WANG J Y,et al.Problems faced by oil recovery engineering in oilfield development and governance measures [J].China Petroleum and Chemical Standards and Quality,2021,41(20):146-147.

[2] 辛 征,于 勇,王元春,等.Cl浓度对硫酸盐还原菌体系中316L 不锈钢腐蚀行为的影响[J].材料保护,2014,47(5):57-60.XIN Z,YU Y,WANG Y C, et al.Effect of Cl concentration on the corrosion behavior of 316L stainless steel in sulfatereducing bacteria system[J].Materials Protection,2014,47(5):57-60.

[3] 贾静焕,刘智勇,杜翠薇,等.316L 不锈钢在高pH 碱性硫化物环境中的应力腐蚀行为[J].表面技术,2015,44(3):36-40.JIA J H,LIU Z Y,DU C W,et al.Stress corrosion behavior of 316L stainless steel in high pH alkaline sulfide environment[J].Surface Technology,2015,44(3):36-40.

[4] BROOKS E K,BROOKS R P,EHRENSBERGER M T.Effects of simulated inflammation on the corrosion of 316L stainless steel[J].Mater Sci Eng C Mater Biol Appl,2017,71(2):200-205.

[5] 杨远航,李晓琳,刘文斌,等.316L 不锈钢焊缝腐蚀微电池的形成机理[J].材料保护,2017,50(4):10-14.YANG Y H,LI X L,LIU W B,et al.Formation mechanism of corrosion microcells in 316L stainless steel welds[J].Materials Protection,2017,50(4):10-14.

[6] PAHLAVAN S,MOAZEN S,TAJI I,et al.Pitting corrosion of martensitic stainless steel in halide bearing solutions[J].Corrosion Science,2016,112(11):233-240.

[7] XIE F,WANG Z Q,WANG D,et al.A synergistic effect of dissolved oxygen,HCO3,and Cl on the electrochemical corrosion behavior of X70 pipeline steel in the oilfield soil environment[J].Applied Physics A, 2020, 126(11):868.

[8] CUI X,ZHOU X,OUYANG D,et al.Initial corrosion behavior of SiCp/Al composites in Cl containing solution[J].Rare Mttal Materials and Engineering, 2016, 45 (11):2 884-2 888.

[9] 白江虎,李具仓,唐浩亮,等.坡莫合金在中性氯离子溶液中的腐蚀行为[J].金属功能材料, 2021, 28(1):25-30.BAI J H,LI G C,TANG H L,et al.Corrosion behavior of pozzolanic alloys in neutral chloride solution[J].Metallic Functional Materials, 2021, 28(1):25-30.

[10] 张鸣伦,王 丹,王兴发,等.海水环境中Cl浓度对316L不锈钢腐蚀行为的影响[J].材料保护,2019,52(1):34-39.ZHANG M L,WANG D,WANG X F,et al.Effect of Clconcentration on corrosion behavior of 316L stainless steel in seawater environment[J].Materials Protection, 2019, 52(1):34-39.

[11] 杨瑞成,毕海娟,牛绍蕊,等.温度和Cl质量分数对304不锈钢耐点蚀性能的影响[J].兰州理工大学学报,2010, 36(5):5-9.YANG R C,BI H J,NIU S R,et al.Effects of temperature and Cl mass fraction on pitting corrosion resistance of 304 stainless steel[J].Journal of Lanzhou University of Technology, 2010, 36(5):5-9.

[12] ZHANG Y.Study on the Electrochemical Corrosion Behavior of 304 Stainless Steel in Chloride Ion Solutions[J].International Journal of Electrochemical Science,2021:16 (2)210251.

[13] 胡建朋,刘智勇,胡山山,等.304 不锈钢在模拟深海和浅海环境中的应力腐蚀行为[J].表面技术,2015,44(3):9-14.HU J P,LIU Z Y,HU S S,et al.Stress corrosion behavior of 304 stainless steel in simulated deep-sea and shallow-sea environments[J].Surface Technology,2015,44(3):9-14.

[14] 郝 震,戴恒彪,李广州,等.304 不锈钢在氯化钠介质中点蚀缓蚀剂的研究[J].表面技术,2015,44(4):123-126.HAO Z,DAI H B,LI G Z,et al.Research on pitting corrosion inhibitor for 304 stainless steel in sodium chloride medium[J].Surface Technology,2015,44(4):123-126.

[15] DONG C,LUO H,XIAO K,et al.Effect of Temperature and Cl Concentration on Pitting of 2205 Duplex Stainless Steel[J].Journal of Wuhan University of Technology-Materials Science Edition,2011,26(4):7-11.

[16] 宫 克,吴 明,张 胜.HCO3-对X90 管线钢应力腐蚀行为的影响[J].中国腐蚀与防护学报,2021,41(5):727-731.GONG K,WU M,ZANG S.Effect of HCO3- on stress corrosion behavior of X90 pipeline steel[J].Journal of Chinese Society for Corrosion and Protection,2021,41(5):727-731.

[17] 吕乃欣,刘开平,尹成先,等.HCO3对超级13Cr 马氏体不锈钢钝化行为及点蚀行为的影响[J].表面技术,2019,48(5):36-42.LV N X,LIU K P,YIN C X,et al.Effect of HCO3 on passivation behavior and pitting behavior of super 13Cr martensitic stainless steel[J].Surface Technology,2019,48(5):36-42.

[18] 张 威,王 铎.超级马氏体不锈钢SuperCr13 在模拟地层水环境中的腐蚀行为[J].腐蚀与防护,2013,34(8):702-705.ZHANG W,WANG D.Corrosion behavior of super martensitic stainless steel SuperCr13 in simulated formation water environment[J].Corrosion and Protection,2013,34(8):702-705.

[19] 常钦鹏,陈友媛,安振东,等.模拟地下咸水中B30 铜镍合金的耐蚀性[J].腐蚀与防护,2018,39(8):6-7.CHANG Q P,CHEN Y Y,AN Z D,et al.Corrosion resistance of B30 copper-nickel alloy in simulated brackish underground water[J].Corrosion and Protection,2018,39(8):6-7.

[20] MA F,ZENG Q,LU X,et al.Electrochemical Study of Stainless Steel Anchor Bolt Corrosion Initiation in Corrosive Underground Water[J].Processes,2021,9(9):1 553.

[21] 王 月,王 丹,谢 飞,等.CO2 对油田地下水环境中Q235 钢和X70 钢腐蚀行为的影响[J].金属热处理,2020,45(6):226-231.WANG Y,WANG D,XIE F,et al.Effect of CO2 on the corrosion behavior of Q235 steel and X70 steel in oilfield groundwater environment[J].Heat Treatment of Metal,2020,45(6):226-231.

[22] 王长罡,董俊华,柯 伟,等.HCO3和SO42-对Cu 点蚀行为的影响[J].金属学报,2012,48(1):9-11.WANG C G,DONGJ H,KEW,etal.Effects of HCO3 and SO42 on the pittingbehaviorofCu[J].Journal ofMetals,2012,48(1):9-11.

[23] 刘广鑫,吴 明,谢 飞,等.HCO3对X100 管线钢在海洋环境中电化学腐蚀行为影响[J].石油化工高等学校学报,2019,32(2):66-70.LIU G X,WU M,XIE F,et al.Effect of HCO3 on electrochemical corrosion behavior of X100 pipeline steel in marine environment[J].Journal of Petrochemical Universities,2019,32(2):66-70.

[24] 宫 克,吴 明,张 胜.HCO3对X90 管线钢应力腐蚀行为的影响[J].中国腐蚀与防护学报,2021,41(5):727-731.GONG K,WU M,ZHANG S.Effect of HCO3 on stress corrosion behavior of X90 pipeline steel[J].Journal of Chinese Society for Corrosion and Protection,2021,41(5):727-731.

[25] LI J H,XIE F,WANG D,et al.Effect of magnetic field on stress corrosion cracking induced by Sulfate-reducing bacteria[J].Construction and Building Materials,2021,303:124521.

[26] 谢 飞,王 月,王兴发,等.辽河油田土壤中溶解氧对X70 管线钢腐蚀的影响[J].表面技术,2018,47(10):186-192.XIE F,WANG Y,WANG X F,et al.Influence of dissolved oxygen in soil on corrosion of X70 pipeline steel in Liaohe oilfield[J].Surface Technology,2018,47(10):186-192.

[27] 李昊宸,谢 飞,齐 季,等.温度和硫酸盐还原菌(SRB)协同作用下X80 钢的腐蚀行为[J].钢铁研究学报,2020,32(10):900-908.LI H C,XIE F,QI J,et al.Corrosion behavior of X80 steel under the synergistic effect of temperature and sulfate-reducing bacteria (SRB)[J].Journal of Iron and Steel Research,2020,32(10):900-908.

[28] 丁文江,向亚贞,常建卫,等.Mg-Al 系和Mg-RE 系合金在NaCl 溶液中的腐蚀电化学行为[J].中国有色金属学报, 2009, 19(10): 1 713-1 719.DING W J,XIANG Y Z,CHANG J W,et al.Corrosion electrochemical behavior of Mg-Al and Mg-RE alloys in NaCl solution[J].The Chinese Journal of Nonferrous Metals,2009, 19(10): 1 713-1 719.

[29] 董宝军,曾德智,石善志,等.辅助蒸汽驱油环境中CO2分压对N80 钢腐蚀行为的影响[J].机械工程材料,2019,43(1):19-22.DONG B J, ZENG D Z, SHI S Z, et al.Effect of CO2 partial pressure on corrosion behavior of N80 steel in auxiliary steam driven oil environment[J].Mechanical for Materials Engineering,2019,43(1):19-22.

[30] 陈 旭,杨佳星,宋 博,等.成膜电位对2205 双相不锈钢在NaCl 溶液中电化学行为的影响[J].辽宁石油化工大学学报,2020,40(6):52-58.CHEN X,YANG J X,SONG B,et al.Effect of film-forming potential on the electrochemical behavior of 2205 duplex stainless steel in NaCl solution[J].Journal of Liaoning Petrochemical University,2020,40(6):52-58.

[31] 林海波,张巨伟,李思雨.温度对316L 不锈钢在3.5%NaCl 溶液中腐蚀行为的影响[J].辽宁石油化工大学学报,2019,39(2):54-58.LIN H B,ZHANG J W,LI S Y.Effect of temperature on corrosion behavior of 316L stainless steel in 3.5%NaCl solution[J].Journal of Liaoning Petrochemical University,2019,39(2):54-58.

[32] 荆婉婷,吴 明.海洋干湿交替环境中HCO3浓度对X100 钢腐蚀行为的影响[J].材料导报,2020,34(24):24 138-24 144.JING W T,WU M.Effects of HCO3 concentration on the corrosion behavior of X100 steel in marine dry and wet alternating environments[J].Materials Reponts,2020,34(24):24 138-24 144.

[33] 张玉成,屈少鹏,庞晓露,等.超临界CO2条件下钢的腐蚀行为研究进展[J].腐蚀与防护,2011,32(11):854-858.ZHANG Y C,QU S P,PANG X L,et al.Progress of corrosion behavior of steel under supercritical CO2 conditions[J].Corrosion & Protection,2011,32(11):854-858.

[34] LIU Z,GAO X,DU L,et al.Corrosion mechanism of low-alloy steel used for flexible pipe in vapor-saturated H2S/CO2 and H2S/CO2-saturated brine conditions[J].Materials and Corrosion,2018,69(9):316-330.

[35] HUANG X,QI Y,CHEN C,et al.Effect of environmental factors on corrosion behavior of L360QCS pipeline steel in H2S/CO2 environments[J].Corrosion Engineering,Science and Technology,2015,50(3):169-177.

文章导航

/