Email Alert  RSS
试验研究

变电设施用钢与7系铝合金的盐雾腐蚀及力学性能衰减研究

展开
  • 1贵州电网有限责任公司电力科学研究院; 2东北电力大学建筑工程学院; 3贵州大学材料与冶金学院
黄朝文(1988-),博士,教授,主要研究方向为高性能金属结构材料强韧化机制,E-mail: cwhuang@gzu.edu.cn

收稿日期: 2023-03-25

  修回日期: 2023-04-12

  录用日期: 2023-05-20

  网络出版日期: 2023-11-03

基金资助

南方电网科技攻关项目(0666002020030101CL00001)资助

Study on Salt Spray Corrosion and Decay of Mechanical Properties of Steels for Substation Facilities and 7xxx Aluminum Alloy

Expand
  • (1.Electric Power Research Institute of Guizhou Power Grid Co., Ltd., Guiyang 550000, China;2.School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin 132000, China;3.School of Materials and Metallurgy, Guizhou University, Guiyang 550025, China)

Received date: 2023-03-25

  Revised date: 2023-04-12

  Accepted date: 2023-05-20

  Online published: 2023-11-03

摘要

在海洋及化工厂附近等强腐蚀环境中,钢材的腐蚀一直是严重缩短电力设施服役寿命的关键问题之一。 为了解决这一问题,提出利用高强度7xxx 系铝合金替代输变电设备用钢的构想,采用室内加速模拟试验,以5%NaCl 盐雾腐蚀环境模拟海洋大气环境,结合拉伸试验和微观组织观察对比分析了变电设施用Q345 钢和7075铝合金2 种材料在不同腐蚀时间(7,21,42 d)后的力学性能衰减和表面腐蚀形貌变化规律,再利用腐蚀失重法、计算机模拟方法等,对比研究了2 种材料在相同的腐蚀环境和载荷下的力学性能。 结果表明,在5%NaCl 盐雾腐蚀环境中,随盐雾腐蚀时间的延长,2 种材料均出现了力学性能衰减的趋势,而且Q345 钢的最高抗拉强度衰减率(24.58%)是7075 铝合金的(3.00%)8 倍。 2 种材料的腐蚀速率均呈先增后减的趋势,Q345 钢的平均腐蚀速率[0.030 g/(m2·d)]是7075 铝合金[0.002 g/(m2·d)]的15 倍左右。 相同腐蚀周期时,Q345 钢的腐蚀坑比7075铝合金的尺寸更大更深,导致在相同的外载荷下Q345 钢中由腐蚀坑引起的应力集中程度显著高于7075 铝合金。因此,理论上可用7075 铝合金代替Q345 钢作为电力设施构件基体材料。

本文引用格式

樊磊, 李波, 张有佳, 黄朝文, 石维, 李伟 . 变电设施用钢与7系铝合金的盐雾腐蚀及力学性能衰减研究[J]. 材料保护, 2023 , 56(10) : 130 -138 . DOI: 10.16577/j.issn.1001-1560.2023.0244

Abstract

The corrosion failure of steel is one of the key problems to shorten the service life of power facilities in some strong corrosive environments, such as marine and chemical plants.To address this problem, the proposition of substituting steel in power transmission and transformation equipment with high-strength 7xxx series aluminum alloys was introduced.Accelerated indoor simulation tests were conducted, using a 5%NaCl salt spray corrosion environment to emulate marine atmospheric conditions.A comparative analysis was performed on the mechanical property degradation and change law of surface corrosion morphology of Q345 steel for substation facilities and 7075 aluminum alloy after varying corrosion durations (7,21,42 d) by integrating tensile tests and microscopic structural observations.Further, employing corrosion weight loss methods and computer simulation techniques, the mechanical properties of the two materials under identical corrosion conditions and loads were comparatively studied.Results indicated that the mechanical properties of both materials tended to decline with the extension of salt spray corrosion time under 5%NaCl salt spray corrosion environment, moreover, the highest tensile strength attenuation rate of Q345 steel (24.58%) was 8 times that of 7075 aluminum alloy (3.00%).Both materials displayed a corrosion rate trend that initially increased and then decreased, with the average corrosion rate of Q345 steel [0.03 g/(m2·d)] being approximately 15 times that of the 7075 aluminum alloy [0.002 g/(m2·d)].At the same corrosion cycle, the corrosion pits in Q345 steel were larger and deeper than those in the 7075 aluminum alloy, resulting in a significantly higher degree of stress concentration caused by corrosion pits in Q345 steel under the same external load compared to 7075 aluminum alloy.Consequently, in theory,7075 aluminum alloy could replace Q345 steel as the base material for power facility components.

参考文献

[1] 潘 伟, 李祖来, 山 泉.热处理工艺对中碳低合金钢力学性能的影响[J].材料研究学报, 2015, 29(6):422-428.PAN W, LI Z L, SHAN Q.Effect of heat treatment process on mechanical properties of a medium carbonlow alloy steel[J].Chinese Journal of Materials Research, 2015, 29(6):422-428.

[2] 徐永祥,严川伟,高延敏,等.基体金属上可溶盐污染对涂层下金属腐蚀和涂层失效的影响[J].腐蚀与防护,2002, 23(11): 469-473.XU Y X, YAN C W, GAO Y M, et al.Effect of soluble salts on underfilm corrosion of metal substrate and coating degradation[J].Corrosion & Protection, 2002, 23(11):469-473.

[3] ALLAM I M, MASLEHUDDIN M, SARICIMEN H, et al.Influence of atmospheric corrosion on the mechanical properties of reinforcing steel[J].Construction & Building Materials, 1994, 8(1): 35-41.

[4] 张允康, 许晓静, 罗 勇, 等.7075 铝合金强化固溶T76处理后的拉伸与剥落腐蚀性能[J].稀有金属材料与工程, 2012, 41(增刊2): 612-615.ZHANG Y K, XU X J, LUO Y, et al.Tensile property and exfoliation corrosion of 7075 aluminum alloy after enhancedsolid-solution and T76 aging treatment[J].Rare Metal Materials and Engineering, 2012, 41(S2): 612-615.

[5] 姬 浩.7000 系高强铝合金的发展及其在飞机上的应用[J].航空科学技术, 2015, 26(6): 75-78.JI H.Development and application of 7000 high strength aluminum alloys on airplane[J].Aeronautical Science &Technology, 2015, 26(6): 75-78.

[6] 黎理胜, 龚亚樵.铝合金船腐蚀与防护策略[J].造船技术, 2012(5): 47-51.LI L S, GONG Y Q.The strategies on corrosion and protection of aluminum alloy ship[J].Marine Technology, 2012(5): 47-51.

[7] STOLYAROV V V, LATYSH V V, SHUNDALOV V A,et al.Influence of severe plastic deformation on aging effect of Al-Zn-Mg-Cu-Zr alloy[J].Materials Science & Engineering A, 1997, s234-236(5): 339-342.

[8] 王希靖,孙桂苹,张 杰,等.焊后热处理对高强铝合金搅拌摩擦焊接头的影响[J].中国有色金属学报, 2009,19(3): 484-489.WANG X J, SUN G P, ZHANG J, et al.Effects of heat treatment after welding on friction stir welding joints of highstrength aluminum alloy[J].The Chinese Journal of Nonferrous Metals, 2009, 19(3): 484-489.

[9] 贺地求, 邓 航, 周鹏展.2219 厚板搅拌摩擦焊组织及性能分析[J].焊接学报, 2007(9): 13-16.HE D Q, DENG H, ZHOU Z P.Analysis of microstructure and properties in friction-stir welding of 2219 thick plate[J].Transactions of the China Welding Institution, 2007(9): 13-16.

[10] 陈朝轶, 李 玲, 王家伟, 等.3003 铝合金盐雾加速腐蚀行为[J].轻金属, 2014(2): 54-58.CHEN C Y, LI L, WANG J W, et al.Accelerated corrosion behavior of 3003 aluminum alloy in salt water spray[J].Light Metals, 2014(2): 54-58.

[11] PANTELAKIS S, D SETSIKA, CHAMOS A, et al.Corrosion damage evolution of the aircraft aluminum alloy 2024 T3[J].International Journal of Structural Integrity, 2016, 7(1): 25-46.

[12] 黄先球, 郎丰军, 王 靓.Q345 钢室内加速腐蚀与大气暴露的相关性研究[J].武汉工程职业技术学院学报,2013, 25(2): 22-24.HUANG X Q, LANG F J, WANG L.Research of correlativity on indoor accelerated corrosion and atmospheric exposure of Q345 steel[J].Journal of Wuhan Engineering Institute,2013, 25(2): 22-24.

[13] 雷 林, 徐静雯.Q345 钢关键腐蚀因子研究[J].全面腐蚀控制, 2019, 33(8): 71-76.LEI L, XU J W.Study onkey corrosion factors of Q345 steel[J].Total Corrosion Control, 2019, 33(8): 71-76.

[14] 杨少华, 刘增威, 林 明, 等.7075 铝合金在不同pH 值NaCl 溶液中的腐蚀行为[J].有色金属科学与工程,2017, 8(4): 7-11.YANG S H, LIU Z W, LIN M, et al.Corrosion behavior of 7075 aluminum alloy in NaCl solutions with different pH values[J].Nonferrous Metals Science and Engineering, 2017,8(4): 7-11.

[15] CUI C J, MA R J, CHEN A R, et al.Experimental study and 3D cellular automata simulation of corrosion pits on Q345 steel surface under salt-spray environment[J].Corrosion Science, 2019, 154: 80-89.

[16] JAFARIAN M, PAIDAR M.The Comparison of Microstructure and Mechanical Properties of Diffusion Joints of 5754,6061, and 7039 Aluminum Alloys to AZ31 Magnesium Alloy[J].Journal of Advanced Materials in Engineering, 2016,35(1): 11-21.

文章导航

/