Email Alert  RSS
综合评述

火电领域激光熔覆金属防护涂层的研究与应用进展

展开
  • 1扬州大学机械工程学院; 2西安热工研究院有限公司
张 超(1981-),教授,研究方向为热喷涂结构与功能涂层,E-mail: zhangc@yzu.edu.cn

收稿日期: 2024-05-23

  修回日期: 2024-06-24

  录用日期: 2024-06-26

  网络出版日期: 2025-02-28

基金资助

国家自然科学基金项目(52375209);扬州市科技计划项目(YZ2023246)

Research and Application Progress of Laser Cladding Metal Protective Coatings in the Thermal Power Field

Expand
  • (1.College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China;2.Xi’an Thermal Power Research Institute Co., Ltd., Xi’an 710032, China)
ZHANG Chao(1981-), Professor, Research Focus: Thermal Spraying Structure and Functional Coatings,E-mail: zhangc@yzu.edu.cn

Received date: 2024-05-23

  Revised date: 2024-06-24

  Accepted date: 2024-06-26

  Online published: 2025-02-28

Supported by

National Natural Science Foundation of China (52375209); Yangzhou Science and Technology Plan Project (YZ2023246)

摘要

激光熔覆技术已经成为现代制造业中提高零部件表面性能的重要手段,特别是在电站设备修复和再制造方面显示出了其独特的优势。 本文综述了不同类型的激光熔覆工艺以及其在提高材料耐磨性、耐腐蚀性等方面的研究与应用,包括激光熔覆技术在火电站领域应用的最新进展,以及在超临界/超超临界电站的应用进展;详述了哈氏合金、镍基合金等材料在激光熔覆过程中表现出的优异性能,包括陶瓷颗粒增强、元素成分选择以及工艺参数优化等。 此外,还探讨了激光熔覆技术面临的挑战和未来发展方向,包括工艺参数的优化、涂层新材料的制备、提高熔覆效率和涂层质量的新技术。 通过激光熔覆技术能够有效地提高发电设备的耐用性和可靠性,尤其是在超临界/超超临界条件下的高温高压环境中。 未来激光熔覆技术的发展挑战主要集中在工艺参数的进一步优化、新型涂层材料的研发、提升熔覆效率和涂层质量的新技术开发。 解决这些挑战将有效提高发电设备在高温高压环境中的耐用性和可靠性,为该领域的可持续发展提供重要支持。

本文引用格式

胡涵, 徐金勇, 吴多利, 魏新龙, 李勇, 张超 . 火电领域激光熔覆金属防护涂层的研究与应用进展[J]. 材料保护, 2025 , 58(1) : 18 -30 . DOI: 10.16577/j.issn.1001-1560.2025.0002

Abstract

Laser cladding technology has become an important means of improving the surface performance of components in modern manufacturing, particularly demonstrating its unique advantages in the repair and remanufacturing of power plant equipment.This paper reviewed different types of laser cladding processes and their research and applications in improving material wear resistance, corrosion resistance and other properties.The latest advancements in the application of laser cladding technology in the thermal power plant field were discussed, along with its progress in supercritical and ultra-supercritical power plants.The excellent performance of materials such as Hastelloy alloys and nickelbased alloys during the laser cladding process was detailed,including the ceramic particle reinforcement,the selection of elemental composition and the optimization of process parameters.Furthermore,the challenges faced by laser cladding technology and its future development directions were explored, including the optimization of process parameters, the preparation of new coating materials, and the development of new technologies to improve cladding efficiency and coating quality.Laser cladding technology can effectively improve the durability and reliability of power generation equipment, especially in high-temperature and high-pressure environments under supercritical/ultra-supercritical conditions.The future development challenges of laser cladding technology are primarily focused on the further optimization of process parameters, the development of new coating materials, and the development of new technologies to improve cladding efficiency and coating quality.Addressing these challenges will significantly enhance the durability and reliability of power generation equipment in high-temperature and high-pressure environments, providing crucial support for the sustainable development of this field.
文章导航

/