Today is Email Alert  RSS

Research Progress in Microbial Corrosion of Aviation Fuel System

Expand
  • 1a.School of Mechanical Engineering,1b.College of Chemical Engineering,1c.Process Control Equipment and Control Engineering Key Laboratory of Universities inSichuan Province,Sichuan University of Science & Engineering,Zigong 643000,China; 2.Failure Mechanics and Engineering Disaster Prevention,Key Laboratory of Sichuan Province,Sichuan University,Chengdu 610065,China; 3.Vanadium and Titanium Resource Comprehensive Utilization Key Laboratory of Sichuan Province,Panzhihua 617000,China; 4.College of Materials and Chemistry & Chemical Engineering,Chengdu University of Technology,Chengdu 610059,China

Received date: 2022-09-25

  Revised date: 2022-10-14

  Accepted date: 2022-11-20

  Online published: 2023-03-15

Abstract

Microbiological corrosion is a serious problem commonly existing in various industrial environments at present,which has a wide range of influence and great harm,but the effect of the control measures currently used is not obvious.In this paper,starting from common microbial corrosion phenomena and against the background of the corrosion of metal materials by microorganisms in the aviation fuel system,the common species of microorganisms in the aviation fuel system were introduced,and the effects of these microorganisms on the corrosion behavior of aviation materials were reviewed.Besides,the corrosion mechanism of common microorganisms on other metal materials was also reviewed to provide effective reference for the research on the mechanism of microbial corrosion in different environments and the exploration of new and efficient microbial corrosion prevention measures.

Cite this article

FU Lei, FAN Qi, ZHU Peng-long, LIN Li, LAI Sheng, HUANG Xing-jie, LI Hui . Research Progress in Microbial Corrosion of Aviation Fuel System[J]. Materials Protection, 2023 , 56(3) : 150 -158 . DOI: 10.16577/j.issn.1001-1560.2023.0071

References

[1] DURSUN T,SOUTIS C.Recent developments in advanced aircraft aluminium alloys[J].Materials and Design,2014,56:862-871.

[2] 周苑生.先进复合材料在航空航天领域的应用[J].中国新技术新产品,2018,2(3):129-130.ZHOU Y S.Application of advanced composite materials in aerospace field[J].New Technology & New Products of China,2018,2(3):129-130.

[3] 汤 旭,李 征,孙程阳.先进复合材料在航空航天领域的应用[J].中国高新技术企业,2016(13):39-42.TANG X,LI Z,SUN C Y.Application of advanced composite materials in aerospace field[J].China High-Tech Enterprises,2016(13):39-42.

[4] 魏学志,王 声.关于飞机机翼整体油箱典型故障的诊治[J].新技术新工艺,2019(6):9-12.WEI X Z,WANG S.Diagnosis and treatment of typical faults in aircraft wing integral tank[J].New Technology &New Process,2019(6):9-12.

[5] MICHELLE E R,HAROLDW G,SOPHIE M R,et al.Characterization of microbial contamination in United states Air Force aviation fuel tanks[J].Journal of Industrial Microbiology & Biotechnology,2006,33(1):29-36.

[6] 殷向东,万 斌.民航飞机燃油箱微生物腐蚀的研究现状[J].腐蚀与防护,2019,40(5):366-369.YIN X D,WAN B.Research status of microbial corrosion of civil aircraft fuel tank[J].Corrosion & Protection,2019,40(5):366-369.

[7] 吴玉军.飞机油箱的微生物腐蚀及防护[J].中国民用航空,2006,71(11):49-49.WU Y J.How to Prevent Aircraft Oil Tanks Microbic Erosion[J].China Civil Aviation,2006,71(11):49-49.

[8] XU C M,ZHANG Y H,CHENG G X,et al.Localized corrosion behavior of 316L stainless steel in the presence of sulfate-reducing and iron-oxidizing bacteria[J].Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2007,443(1):235-241.

[9] CASTANEDA H,BENETTON X D.SRB-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions[J].Corrosion Science,2008,50(4):1 169-1 183.

[10] 周恩泽.双相不锈钢的海洋微生物腐蚀行为研究[D].沈阳:东北大学,2016.ZHOU E Z.Investigation of marine microbiologically influenced corrosion on duplex stainless steel[D].Shenyang:Northeastern University,2016.

[11] 张兴金,秦存峰.飞机整体油箱的微生物污染及防治[J].石油化工腐蚀与防护,2020,37(6):30-32.ZHANG X J,QING C F.Microbial contamination and prevention of aircraft integral fuel tank[J].Corrosion & Protection in Petrochemical Industry,2020,37(6):30-32.

[12] 樊友军,皮振邦,华 萍,等.微生物腐蚀的作用机制与研究方法现状[J].材料保护,2001,34(5):18-20.FAN Y J,PI Z B,HUA P,et al.Microbial corrosion and its research methods[J].Materials Protection,2001,34(5):18-20.

[13] POSTGATE J R.The sulphate reducing bacteria and edition[M].Cambridge: Cambridge University Press,1984.

[14] 刘 彤,张艳飞,陈 旭,等.SRB 对X70 钢在土壤模拟溶液中腐蚀行为的影响[J].中国腐蚀与防护学报,2014,34(2):112-118.LIU T,ZHANG Y F,CHEN X,et al.Effect of SRB on Corrosion Behavior of X70 steel in a Simulated Soil Solution[J].Journal of Chinese Society for Corrosion and Protection,2014,34(2):112-118.

[15] CHEN L J,WEI B,XU X H.Effect of Sulfate-Reducing Bacteria (SRB) on the Corrosion of Buried Pipe Steel in Acidic Soil Solution[J].Coatings,2021,11(6):625.

[16] GU T,JIA R,UNSAL T,et al.Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria[J].Journal of Materials Science &Technology,2019,35(4):169-174.

[17] EMERSON D,MOYER C L.Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH[J].Applied and Environmental Microbiology,1997,63(12):4 784-4 792.

[18] DAVID E,WEREN D V.The Role of FeOB in Engineered Water Ecosystems: A Review[J].Journal (American Water Works Association),2015,107(1):E47-E57.

[19] 刘宏伟,刘宏芳.铁氧化菌引起的钢铁材料腐蚀研究进展[J].中国腐蚀与防护学报,2017,37(3): 195-206.LIU H W,LIU H F.Research progress of corrosion of steels induced by Iron Oxidizing Bacteria[J].Journal of Chinese Society for Corrosion and Protection,2017,37 (3):195-206.

[20] LV M,DU M,LI X,et al.Mechanism of microbiologically influenced corrosion of X65 steel in seawater containing sulfate-reducing bacteria and iron-oxidizing bacteria[J].Journal of Materials Research and Technology,2019,8(5):4 066-4 078.

[21] LIU H W,FU C Y,GU T Y,et al.Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water[J].Corrosion Science,2015,100:484-495.

[22] XU C M,ZHANG Y H,CHENG G X,et al.Pitting corrosion behavior of 316L stainless steel in the media of sulphate-reducing and iron-oxidizing bacteria[J].Materials Characterization,2008,59(3):245-255.

[23] DAI X Y,WANG H,JU L K,et al.Corrosion of aluminum alloy 2024 caused by Aspergillus niger[J].International Biodeterioration & Biodegradation,2016,115:1-10.

[24] QU Q,WANG L,LI L,et al.Effect of the fungus,Aspergillus niger,on the corrosion behaviour of AZ31B magnesium alloy in artificial seawater[J].Corrosion Science,2015,98:249-259.

[25] 李松梅,王彦卿,刘建华,等.枝孢霉菌对A3 钢腐蚀的影响[J].材料工程,2008(7):55-58.LI S M,WANG Y Q,LIU J H,et al.Influence of Cladosporium on corrosion behavior of steel A3[J].Journal of Materials Engineering,2008(7):55-58.

[26] 朱武峰,李 昆,王 兵,等.舰载机液压系统实用防霉技术及试验研究[J].液压气动与密封,2014,34(1):71-74.ZHU W F,LI K,WANG B,et al.Practical fungus-proof technology and experiment research of carrier-based aircraft hydraulic system [J].Hydraulics Pneumatics & Seals,2014,34(1):71-74.

[27] 李庆宏,陈景浩,申媛媛,等.切削液中类产碱假单胞菌对铝合金腐蚀行为的影响[J].表面技术,2021,50(5):269-280.LI Q H,CHEN J H,SHEN Y Y,et al.Microbially influenced corrosion behavior of aluminium alloy in metalcutting fluid containing pseudomonas pseudoalcaligenes[J].Surface Technology,2021,50(5):269-280.

[28] 赵 婷,邱峥辉,蔺存国,等.海藻希瓦氏菌对316L 的腐蚀行为研究: 2020 第七届海洋材料与腐蚀防护大会暨2020 第一届钢筋混凝土耐久性与设施服役安全大会摘要集[C].无锡:中国腐蚀与防护学会,2020.ZHAO T,QIU Z H,LIN C G,et al.Corrosion behavior of 316L by Hiwanella alga: Summary Set of the 7th Marine Materials and Corrosion Protection Conference 2020 and the 1st Reinforced Concrete Durability and Service Safety Conference 2020[C].Wuxi: Chinese Institute of Corrosion and Protection,2020.

[29] OKABE S,ODAGIRI M,ITO T,et al.Succession of sulfuroxidizing bacteria in the microbial community on corroding concrete in sewer systems[J].Applied and Environmental Microbiology,2007,73(3): 971-980.

[30] HALIM A,WATKIN E,GUBNER R.Short term corrosion monitoring of carbon steel by bio-competitive exclusion of thermophilic sulphate reducing bacteria and nitrate reducing bacteria[J].Electrochimica Acta,2012,77:348-362.

[31] ETIQUE M,JORAND F P A,ZEGEYE A,et al.Abiotic process for Fe oxidation and green rust mineralization driven by a heterotrophic nitrate reducing bacteria (Kle-bsiella mobilis)[J].Environmental Science & Technology,2014,48(7): 3 742-3 751.

[32] TAN J L,GOH P C,BLACKWOOD D J.Influence of H2Sproducing chemical species in culture medium and energy source starvation on carbon steel corrosion caused by methanogens [J].Corrosion Science: The Journal on Environmental Degradation of Materials and its Control,2017,119(5):102.

[33] GU T,GALICIA B.Can acid producing bacteria be responsible for very fast MIC pitting: Proceedings of the 2012 National Association of Corrosion Engineers International Corrosion Conference[C].Salt Lake City: NACE International,2012.

[34] ALENCIA-CANTERO V E,PENA-CABRIALES J J.Effects of iron-reducing bacteria on carbon steel corrosion induced by thermophilic sulfate-reducing consortia[J].Journal of Microbiology and Biotechnology,2014,24(2): 280-286.

[35] SCHUTZ M K,SCHLEGEL M L,LIBERT M,et al.Impact of iron-reducing bacteria on the corrosion rate of carbon steel under simulated geological disposal conditions[J].Environmental Science & Technology,2015,49(12): 7 483-7 490.

[36] USHER K M,KAKSONEN A H,COLE I,et al.Critical review: Microbially influenced corrosion of buried carbon steel pipes[J].International Biodeterioration & Biodegradation,2014,93:84-106.

[37] NOVIKOVA N D.Review of the knowledge of microbial contamination of the russian manned spacecraft[J].Microbial Ecology,2004,47(2):127-132.

[38] PARKER C D.Mechanics of corrosion of concrete sewers by hydrogen sulfide[J].Water Environment & Technology,1951,23(12): 1 477-1 485.

[39] 杜建波,尹衍升,滕少磊,等.海洋微生物腐蚀研究进展[J].山东冶金,2007,29(S1):1-3.DU J B,YIN Y S,TENG S L,et al.Advances in the study of microbiologically influenced corrosion in marine environment[J].Shandong Metallurgy,2007,29(S1): 1-3.

[40] 陈德斌,胡裕龙,陈学群.船舰微生物腐蚀研究进展[J].海军工程大学学报,2006,18(1):79-84.CHEN D B,HU Y L,CHEN X Q.Progress of microbial influenced corrosion in warship[J].Journal of Naval University of Engineering,2006,18(1):79-84.

[41] 陈景威,随 欣,张乃夫,等.载人航天器下行细菌对LY12 铝合金腐蚀行为的影响[J].载人航天,2017,23(2):252-257.CHEN J W,SUI X,ZHANG N F,et al.Corrosion behavior of LY12 aluminum alloy influenced by bacteria isolated from manned spacecraft[J].Manned Spaceflight,2017,23(2):252-257.

[42] 张小伟,张 雄.混凝土微生物腐蚀防治研究现状和展望[J].材料保护,2005,38(11):44-48.ZHANG X W,ZHANG X.Present and prospect of microbial corrosion prevention of concrete[J].Materials Protection,2005,38(11): 44-48.

[43] 吴晓金.喷气燃料的微生物危害及对策[J].中国民航飞行学院学报,2001,12(4):20-22.WU X J.Microbial hazards of jet fuel and countermeasures[J].Journal of Civil Aviation Flight University of China,2001,12(4):20-22.

[44] 张 琦,唐 萌,李 荻.飞机铝合金油箱微生物腐蚀机理[J].航空制造工程,1997(4):28-29.ZHANG Q,TANG M,LI D.Microbial corrosion mechanism of aircraft aluminum alloy fuel tank[J].Aviation Maintenance & Engineering,1997(4):28-29.

[45] 马振瀛,朱艳静,张建国,等.航空燃油系统的微生物灾害[J].石油商技,2000,18(1):24-26.MA Z Y,ZHU Y J,ZHANG J G,et al.Calamity of microorganism in airation fuel system[J].Petroleum Products Application Research,2000,18(1):24-26.

[46] 郭启营.航空煤油中微生物污染及防治[J].河北科技大学学报,2010,31(3):270-273.GUO Q Y.Aviation kerosene and prevention of microbial contamination[J].Journal of Hebei University of Science and Technology,2010,31(3):270-273.

[47] 郭玲玲,陈国需,杨致邦,等.喷气燃料中微生物的分离和鉴定[J].后勤工程学院学报,2008,24(2):67-70.GUO L L,CHEN G X,YANG Z B,et al.Separation and identification of microorganisms in jet fuels[J].Journal of Logistical Engineering University,2008,24(2):67-70.

[48] 梁 俊.航空燃料的大敌——微生物[J].油气储运,1995,14(5):52-56.LIANG J,Microoganism,the formidable enemy of jet fuels[J].Oil & Gas Storage and Transportation,1995,14(5):52-56.

[49] ROBBINS J A,LEVY R.A review of the microbiological degradation of fuel[M].Netherlands: Springer,2005.

[50] SOWARDS J W,WILLIAMSON C H D,WEEKS T S,et al.The effect of acetobacter sp.and a sulfate-reducing bacterial consortium from ethanol fuel environments on fatigue crack propagation in pipeline and storage tank steels[J].Corrosion Science,2014,79(2):128-138.

[51] GUIAMET P S,GAYIARDE C C.Activity of an isothiazolone biocide against hormoconis resinae in pure and mixed biofilms[J].World Journal of Microbiology and Biotechnology,1996,12(4):395-397.

[52] MORTON L H G,SURMAN S B.Biofilms in biodeterioration-a review[J].International Biodeterioration & Biodegradation,1994,34(3):203-221.

[53] GAYLARDE C C,BENTO F M,KELLEY J.Microbial contamination of stored hydrocarbon fuels and its control[J].Revista de Microbiologia,1999,30(1):1-10.

[54] 崔艳雨,宁丽纳.机油箱用材7075 铝合金在积水环境中的微生物腐蚀规律[J].材料保护,2014,47(12):29-32.CUI Y Y,NING L N.Corrosive behavior of 7075-T6 aluminum alloy as plane fuel tank material in accumulative water environment[J].Materials Protection,2014,47(12):29-32.

[55] 李 佳,崔艳雨,石 博.7075-T6 镁铝合金的微生物腐蚀行为研究[J].全面腐蚀控制,2013,27(9):56-60.LI J,CUI Y Y,SHI B.Research of the microbial corrosion behavior of the 7075-T6 magnesium aluminum alloy[J].Total Corrosion Control,2013,27(9):56-60.

[56] 熊福平.湿热海洋环境中铝合金7075-T6 霉菌腐蚀机理研究[D].武汉:华中科技大学,2018.XIONG F P.Research on fungus corrosion mechanism of aluminum alloy 7075-T6 in humid and hot marine environment [D].Wuhan: Huazhong University of Science and Technology,2018.

[57] 李晨景.黑曲霉对7075 铝合金腐蚀行为的影响及其防护方法的研究[D].武汉:华中科技大学,2019.LI C J.Effect of aspergillus niger on corrosion behavior of 7075 aluminum alloy and its protection methods [D].Wuhan:Huazhong University of Science and Technology,2019.

[58] CHEN S Q,WANG P,ZHANG D.Corrosion behavior of copper under biofilm of sulfate-reducing bacteria[J].Corrosion Science,2014,87(10):407-415.

[59] JIRON-LAZOS U,CORVO F,DE LA ROSA S C,et al.Localized corrosion of aluminum alloy 6061 in the presence of Aspergillus niger[J].International Biodeterioration &Biodegradation,2018,133:17-25.

[60] CHANDRA K,AMRITA M,SINGH A P,et al.Microbiologically influenced corrosion of 70/30 cupronickel tubes of a heat-exchanger[J].Engineering Failure Analysis,2019,105:1 328-1 339.

[61] 李松梅,王力锋,杜 鹃,等.Q235 钢在青霉菌作用下的腐蚀行为和电化学特性[J].北京科技大学学报,2013,35(3):339-346.LI S M,WANG L F,DU J,et al.Corrosion behavior and electrochemical character of Q235 carbon steel in the presence of Penicillium [J].Journal of University of Science and Technology Beijing,2013,35(3):339-346.

[62] JACK R F,RINGELBERG D B,WHITE D C.Differential corrosion rates of carbon steel by combinations of Bacillus sp.,Hafnia alvei and Desulfovibrio gigas established by phospholipid analysis of electrode biofilm[J].Pergamon,1992,33(12):1 843-1 853.

[63] 李松梅,王彦卿,刘建华,等.假单胞菌对A3 钢在枝孢霉菌溶液中腐蚀行为的影响[J].物理化学学报,2007,23(12):1 963-1 968.LI S M,WANG Y Q,LIU J H,et al.Influence of pseudomonas on the corrosion behaviors of steel A3 in cladosporium solution[J].Acta Physico-Chimica Sinica,2007,23(12):1 963-1 968.

[64] 张洪波,张 勇,樊伟杰,等.三种典型菌种复合环境下2A12 铝合金的腐蚀行为研究[J].装备环境工程,2020,17(2):13-19.ZHANG H B,ZHANG Y,FAN W J,et al.Corrosion behavior of 2A12 aluminum alloy in combined environment of three typical bacterial species[J].Equipment Environmental Engineering,2020,17(2):13-19.

[65] 李庆超.复合菌种对海洋工程材料微生物腐蚀的影响研究[D].舟山:浙江海洋大学,2016.LI Q C.Effect of composite bacteria on microbial corrosion of marine engineering materials [D].Zhoushan: Zhejiang Ocean University,2016.

[66] 武素茹,段继周,杜 敏,等.硫酸盐还原细菌和铁还原细菌混合生物膜对碳钢腐蚀的影响[J].材料开发与应用,2008,23(3):53-56.WU S R,DUAN J Z,DU M,et al.Corrosion of carbon steel influenced by SRB and IOB anaerobic biofilm[J].Development and Application of Materials,2008,23(3):53-56.

Outlines

/