Today is Email Alert  RSS

Research on AC Corrosion Behavior of X65 Pipeline Steel and Sacrificial Anode Materials in Seawater Environment

Expand
  • 1.Tianjin Branch,CNOOC (China) Co.,Ltd.,Tianjin 300459,China;2.Institute for Advanced Materials and Technology,University of Science and Technology Beijing,Beijing 100083,China

Received date: 2023-02-10

  Revised date: 2023-03-11

  Accepted date: 2023-04-12

  Online published: 2023-08-23

Abstract

Currently,few studies have been conducted on the AC corrosion behavior of pipeline steel and sacrificial anodes in the marine environment.In order to provide a reference for evaluating the AC corrosion risk of submarine pipeline and the consumption performance of sacrificial anodes under AC interference,the AC corrosion simulation test was employed to study the AC corrosion behavior of X65 pipeline steel,aluminum alloy and zinc alloy sacrificial anodes under different AC current densities in simulated seawater environment.Results showed that the potential of X65 pipeline steel,aluminum alloy sacrificial anode and zinc alloy sacrificial anode samples were negatively shifted after AC interference was applied,and the greater the AC current density,the greater the offset.The corrosion rates of three materials increased with the increase of AC current density,but the corrosion rate of aluminum alloy was much higher than that of zinc alloy and X65 pipeline steel.Moreover,X65 pipeline steel exhibited uniform corrosion under 0~30 A/m2 AC interference,and when the AC current density increased to 100 A/m2,pitting pits appeared on the surface.Aluminum alloy exhibited pitting corrosion on the surface under different AC current densities,while zinc alloy was mainly uniform corrosion.In the marine environment,the service performance of zinc alloy was superior to that of aluminum alloy.

Cite this article

WANG Hongguang, DONG Kun, HUANG Haojun, WANG Baosen, TIAN Nianpei, LIANG Yi, DU Yanxia . Research on AC Corrosion Behavior of X65 Pipeline Steel and Sacrificial Anode Materials in Seawater Environment[J]. Materials Protection, 2023 , 56(7) : 47 -56 . DOI: 10.16577/j.issn.1001-1560.2023.0160

References

[1] 李 鑫,陈长风.油气长输埋地管道交流腐蚀研究进展[J].材料保护,2020,53(9):114-120.LI X,CHEN C F.Research Progress on Alterating Current Corrosion of Oil & Gas Long-Distance Buried Pipelines [J].Materials Protection,2020,53(9):114-120.

[2] 谢丝莉,杜艳霞,高荣钊,等.X70 管线钢交流腐蚀的影响因素[J].腐蚀与防护,2020,41(2):7-13.XIE S L,DU Y X,GAO R Z,et al.AC Corrosion Influencing Factors for X70 Pipeline Steel [J].Corrosion & Protection,2020,41(2):7-13.

[3] MATTHEW L,KELLY F.AC Interference and Mitigation:Heartland Case Study:Proceedings of the Corrosion[C].Houston: NACE International,2017: 9 461.

[4] 宋晓琴,袁铃岚,李佳佳,等.交流电流密度对X70 管道钢腐蚀行为的影响[J].材料保护,2017,50(8):36-41.SONG X Q,YUAN L L,LI J J,et al.Impact of Alternating Current Density on Corrosion Behavior of X70 Pipeline Steel[J].Materials Protection,2017,50(8):36-41.

[5] 韦博鑫,许 进,高立群,等.交流杂散电流对X80 管线钢的腐蚀行为影响[J].装备环境工程,2021,18(4):21-27.WEI B X,XU J,GAO L Q,et al.Effect of AC Stray Current on Corrosion Behavior of X80 Pipeline Steel [J].Equipment Environmental Engineering,2021,18(4):21-27.

[6] KUANG D,CHENG Y F.Understand the AC induced pitting corrosion on pipelines in both high pH and neutral pH carbonate/bicarbonate solutions [J].Corrosion Science,2014,85:304-310.

[7] ZHU M,DU C W,LI X G,et al.Effect of AC current density on stress corrosioncracking behavior of X80 pipeline steel in high pH carbonate/bicarbonate solution[J].Electrochimica Acta,2014,117:351-359.

[8] 张守鑫,李自力,杨 超,等.基于实时图像的X90 钢交流腐蚀形貌发展规律研究[J].油气田地面工程,2019,38(10):118-123.ZHANG S X,LI Z L,YANG C,et al.Development Law Study on AC Corrosion Morphology of X90 Steel Based on Real time Image [J].Oil-Gas Field Surface Engineering,2019,38(10):118-123.

[9] FU Y,KOU J,DU C W.Fractal characteristics of AC corrosion morphology of X80 pipeline steel in coastal soil solution[J].Anti-Corrosion Methods & Materials,2019,66(6):868-878.

[10] 杨 燕,李自力,文 闯,等.中性环境中X70 钢的交流腐蚀行为[J].腐蚀与防护,2013,34(4):291-294.YANG Y,LI Z L,WEN C,et al.Alternating Current Corrosion behaviors of X70 Steel in Neutral environments [J].Corrosion & Protection,2013,34(4):291-294.

[11] 张 慧,杜艳霞,李 伟,等.不同环境介质中X70 钢的交流腐蚀行为及腐蚀产物膜层分析[J].金属学报,2017,53(8):975-982.ZHANG H,DU Y X,LI W,et al.Investigation on AC-Induced Corrosion Behavior and Product Film of X70 Steel in Aqueous Environment with Various Ions[J].Acta Metall Sin,2017,53(8): 975-982.

[12] CLAY B.Mitigating AC Corrosion on Cathodically Protected Pipelines[J].Pipeline & Gas Journal,2015,242(10):71-74.

[13] 龚金保,徐乃欣,张承典.交流电干扰对镁合金AZ41 牺牲阳极电化学性能的影响[J].中国腐蚀与防护学报,1998,18(1):21-26.GONG J B,XU N X,ZHANG C D.Effect of AC Interference on the Electrochemical Performance of Magnesium Alloy AZ41 Sacrificial Anode[J].Journal of Chinese Society for Corrosion and Protection,1998,18(1):21-26.

[14] 林 海.交流干扰对镁阳极腐蚀行为的影响[J].电镀与环保,2020,40(3):72-75.LIN H.Influence of AC Interference on Corrosion Behavior of Magnesium Anode[J].Electroplating & Pollution Control,2020,40(3):72-75.

[15] TANG D Z,DU Y X,LIANG Y,et al.Effect of alternating current on the performance of magnesium sacrificial anode[J].Materials and Design,2016,93:133-145.

[16] TANG D Z,LU M X,DU Y X,et al.Electrochemical Studies on the Performance of Zinc Used for Alternating Current Mitigation[J].Corrosion,2015,71(6):795-806.

[17] 王若民,王夫成,詹马骥,等.高压输电耐张线夹用铝在中性溶液中的交流腐蚀行为[J].表面技术,2016,45(3):146-151.WANG R M,WANG F C,ZHAN M J,et al.AC Corrosion Behavior of Aluminum for Strain Clamp Applied in Highvoltage Transmission Line in Neutral Solution [J].Surface Technology,2016,45(3):146-151.

[18] 王夫成,詹马骥,郎经纬,等.NY-400 型耐张线夹内部交流腐蚀形貌及产物研究[J].表面技术,2015,44(9):116-121.WANG F C,ZHAN M J,LANG J W,et al.Internal Corrosion Morphology and Products of NY-400 Strain Clamp under AC Conditions[J].Surface Technology,2015,44(9):116-121.

[19] LEE Y L,OU B L,CHIU Y H.Effect of frequency and current density on A.C.etching of aluminum electrolytic capacitor foil[J].Journal of Materials Science: Materials in Electronics,2007,18(6):627-634.

[20] GB/T 16545-2015,金属和合金的腐蚀-腐蚀试样上腐蚀产物的清除[S].GB/T 16545-2015,Corrosion of metals and alloys-removal of corrosion products from corrosion test specimens [S].

[21] LALAVAIN S B,LIN X.A revised model for predicting corrosion of materials induced by alternating voltages[J].Corrosion Science,1996,38(10):1 709-1 719.

[22] 姜子涛,杜艳霞,董 亮,等.交流电对Q235 钢腐蚀电位的影响规律研究[J].金属学报,2011,47(8):997-1 002.JIANG Z T,DU Y X,DONG L,et al.Effect of ac current on corrosion potential of Q235 steel[J].Acta Metall Sin,2011,47(8): 997-1 002.

[23] ARRABAL R,MINGO B,PARDO A,et al.Pitting corrosion of rheocast A356 aluminium alloy in 3.5 wt.%NaCl solution[J].Corrosion Science,2013,73: 342-355.

[24] ZAID B,SAIDI D,BENZAID A,et al.Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy[J].Corrosion Science,2008,50(7):1 841-1 847.

[25] LUM X,TANG D Z,DU Y X,et al.Investigation on corrosion of zinc ribbon under alternating current[J].Corrosion Engineering,Science and Technology,2015,50 (3):256-263.
Outlines

/