Today is Email Alert  RSS

Effects of Copperizing on Microstructure and Properties of QT500-7

Expand
  • School of Materials Science and Engineering,Shenyang Ligong University,Shenyang 110159,China

Received date: 2023-01-24

  Revised date: 2023-02-16

  Accepted date: 2023-03-12

  Online published: 2023-08-23

Abstract

 In order to improve the surface mechanical properties of QT500-7,the copperizing layer was prepared on the surface of QT500-7 by solid diffusion metallizing method.The diffusion behavior of copper in QT500-7 and its influence on the microstructure and hardness were studied by metallographic microscope,scanning electron microscope,hardness tester,respectively.According to the calculation results,the solid solubility of copper in ductile iron substrate enhanced with the increase of processing temperature,and the solid solubility was 0.56%(mass fraction) at temperature of 1 173 K.The diffusion distance of copper in ductile cast iron rose with the increase of diffusion temperature and diffusion time.The theoretical diffusion distance was 23 μm under the condition of 1 173 K insulation for 8 h.The experimental results showed that the diffusion of Cu in QT500-7 inhibited the growth of ferrite grains in the pearlite transformation stage,causing that the content of pearlite increased.The diffusion of copper into the ductile iron increased the amount of graphite at the prepared copperizing layer,and narrowed the gap between the amount of graphite in the core and the copperizing layer.Besides,the observed diffusion layer depth was 40 μm,larger than the theoretical diffusion distance of copper to the perfect crystal of iron.The hardness of the copperizing layer prepared on the surface of ductile cast iron was slightly higher than that of the original sample.

Cite this article

GU Rao, LIU Fengguo, LOU Changsheng . Effects of Copperizing on Microstructure and Properties of QT500-7[J]. Materials Protection, 2023 , 56(7) : 70 -76 . DOI: 10.16577/j.issn.1001-1560.2023.0163

References

[1] 龚文邦,白新社,刘金城.球墨铸铁的发展[J].现代铸铁,2019,39(4):22-27.GONG W B,BAI X S,LIU J C.Development of Nodular Iron[J].Modern Cast Iron,2019,39(4):22-27.

[2] ZHOU L,ZHU H H,YAN Z G,et al.Experimental Testing on Ductile-Iron Joint Panels for High-Stiffness Segmental Joints of Deep-Buried Drainage Shield Tunnels[J].Tunnelling and Underground Space Technology,2019,87:145-159.

[3] RIPOSAN I,CHISAMERA M,STAN S.Control of Surface Graphite Degeneration in Ductile Iron for Windmill Applications[J].International Journal of Metalcasting,2013,7(1):9-20.

[4] NOFAL A A,JEKOVA L.Novel Processing Techniques and Applications of Austempered Ductile Iron[J].Journal of the University of Chemical Technology and Metallurgy,2009,44(3):213-228.

[5] YAO P,ZHOU K,LIN Y,et al.Light-Weight Topological Optimization for Upper Arm of an Industrial Welding Robot[J].Metals,2019,9(9): 1020.

[6] WAN G,WU Q,TANG M,et al.Tribological Properties of two Typical Materials of Hydraulic Motor’s Rotor at Different Ambient Temperatures[J].Applied Sciences,2022,12(11): 5 582-5 597.

[7] 王保华,卢 杉.QT500-7 铸铁车轮的断裂失效分析[J].金属热处理,2018,43(7):238-241.WANG B H,LU S.Fracture Failure Analysis of QT500-7 Cast Iron Wheel[J].Heat Treatment of Metals,2018,43(7):238-241.

[8] 王 令,李志华.铜对汽车差速器壳体QT500-7 力学性能的影响[J].金属加工(热加工),2020(6):85-86.WANG L,LI Z H.Effect of Copper on the Mechanical Properties of Automobile Differential Housing QT500-7[J].MW Metal Forming,2020(6):85-86.

[9] XIONG J T,XIE Q,LI J L,et al.Diffusion Bonding of Stainless Steel to Copper with Tin Bronze and Gold Interlayers[J].Journalof Materials Engineering and Performance,2012,21(1): 33-37.

[10] LIU Z H,ZHANG D Q,SING S L,et al.Interfacial Characterization of SLM Parts in Multi-Material Processing:Metallurgical Diffusion between 316L Stainless Steel and C18400 Copper Alloy[J].Materials Characterization,2014,94:116-125.

[11] 李金刚,汪振福,时海芳,等.渗铜法制备抗菌不锈钢工艺及组织性能的研究[J].热加工工艺,2007,36(18):53-55.LI J G,WANG Z F,SHI H F,et al.Study on Microstructure and Properties of Anti-microbial Stainless Steel Prepared by Copperizing Process[J].Hot Working Technology,2007,36(18):53-55.

[12] 王 凡,郑丹星.甲烷氧化偶联制烯烃的热力学平衡限度[J].燃料化学学报,2006,34(1):71-74.WANG F,ZHENG D X.Thermodynamic Equilibrium Limit of the Methane Oxidative Coupling System[J].Journal of Fuel Chemistry and Technology,2006,34(1):71-74.

[13] 孙成伟,郭翠梨,叶陈良,等.醋酸甲酯加氢反应的热力学计算与分析[J].石油化工,2015,44(4):409-414.SUN C W,GUO C L,YE C L,et al.Thermodynamic Analysis for Hydrogenation of Methyl Acetate[J].Petrochemical Technology,2015,44(4):409-414.

[14] SILBEY R J,ALBERTY R A,BAWENDI M G,et al.Physical Chemistry(Fourth Edition)[M].Hoboken: John Wiley and Sons Inc,2004:60-138.

[15] ANAND M S,AGARWALA R P.Diffusion of Copper in Iron[J].Journal of Applied Physics,1966,37 ( 11):4 248-4 251.

[16] 赵 振.柱塞泵缸体用水平连铸球铁型材的组织与性能研究[D].西安: 西安理工大学,2019.ZHAO Z.Study on Microstructures and Properties of Horizontal Continuous Casting Ductile Iron Bars for Plung[D].Xi’an: Xi’an University of Technology,2019.

[17] 齐 凯.球墨铸铁高温塑性变形行为研究及其应用[D].大连: 大连理工大学,2009.QI K.Research on Hot Deformation Behavior of Nodular Cast Iron and Its Application[D].Dalian:Dalian University of Technology,2009.

[18] SALJE G,FELLER-KNIEPMEIER M.The Diffusion and Solubility of Copper in Iron[J].Journal of Applied Physics,1977,48(5): 1 833-1 839.

[19] 周铁城.合金固溶体形成的SSS 法则[J].材料科学与工程学报,2020,38(4):525-528.ZHOU T C.SSS Rule for Alloy Solid Solution Formation[J].Journal of Materials Science and Engineering,2020,38(4):525-528.

[20] VEN A V D,YU H C,CEDER G,et al.Vacancy Mediated Substitutional Diffusion in Binary Crystalline Solids[J].Progress in Materials Science,2010,55(2): 61-105.

[21] 马 涛,李慧蓉,高建新,等.铜在碳钢中扩散及其对碳钢耐腐蚀性的影响[J].材料研究学报,2019,33(3):225-231.MA T,LI H R,GAO J X,et al.Diffusion Behavior of Cu in Carbon Steel and its Influence on Corrosion Resistance of Carbon Steel[J].Chinese Journal of Materials Research,2019,33(3):225-231.

[22] 田长亮.含铜球墨铸铁的微观组织和力学性能研究[J].铸造工程,2019,43(3):31-37.TIAN C L.Microstructure and Mechanical Properties of Nodular Iron Containing Copper[J].Foundry Engineering,2019,43(3):31-37.

[23] 雷富军.球墨铸铁球化及其孕育处理研究进展[J].热加工工艺,2008,37(13):125-127.LEI F J.Research Progress on Spheroidization and Inoculation Processing of Spheroidal Graphite Cast Iron[J].Hot Working Technology,2008,37(13):125-127.

[24] 叶曙龙,刘宪民,焦守民,等.球墨铸铁QT450-10、QT500-7 的退火工艺优化与组织分析[J].热处理技术与装备,2011,32(1):5-8.YE S L,LIU X M,JIAO S M,et al.The Annealing Process Optimization and Microstructure Analysis of Spheroidal Graphite Cast Iron QT450-10 and QT500-7[J].Heat Treatment Technology and Equipment,2011,32(1):5-8.

[25] LACAZE J.Pearlite Growth in Cast Irons: a Review of Literature Data[J].International Journal of Cast Metals Research,1999,11(5):431-436.

[26] LACAZE J,SERTUCHA J.Effect of Cu,Mn and Sn on Pearlite Growth Kinetics in as-Cast Ductile Irons[J].International Journal of Cast Metals Research,2016,29(1/2):74-78.

[27] SIL'MAN G I,KAMYNIN V V,TARASOV A A.Effect of Copper on Structure Formation in Cast Iron[J].Metal Science and Heat Treatment,2003,45(7):254-258.

[28] RIEBISCH M,WEIß P,CREMER C,et al.Properties and Microstructure of Copper-Alloyed Solid Solution-Strengthened Ductile Iron[J].Materials Science and Technology,2018,34(6):725-730.

[29] TSUJIKAWA M,MATSUMOTO N,NAKAMOTO K,et al.Pearlite Stabilisation by Copper on Ductile Cast Iron[J].Key Engineering Materials,2011,457:151-156.
Outlines

/