Today is Email Alert  RSS

Research Progress of New Anodes for Zinc Electrodeposition

  • TAO Yi ,
  • CHEN Bu-ming ,
  • HUANG Hui ,
  • GUO Zhong-cheng ,
  • HE Ya-peng
Expand
  • 1. Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China;
    2. Yunnan Research Center of Metallurgical Electrode Materials Engineering Technology, Kunming 650106, China;
    3. Kunming Science & Technology Hengda Technology Co., Ltd., Kunming 650106, China

Received date: 2022-12-25

  Revised date: 2023-01-25

  Accepted date: 2023-02-16

  Online published: 2023-07-14

Abstract

Lead anodes are cheap and stable in acidic sulfate solution, so they are used to produce high purity zinc, but with reduced mineral quality, zinc electrolyte environment gets worse, many problems in traditional lead anodes limit their further development: including high oxygen evolution potential, cathode products pollution caused by anodic dissolution, poor mechanical properties. In order to solve these problems, the new anode was described in several different aspects in this paper: (1) Doping different elements (such as Ag, Ca, Co, RE, etc.) in the lead alloy could improve the alloy structure, enhance the electrocatalytic activity of the lead anode, and reduce the dissolution of lead in the electrolyte by adding substances. (2) Applying different processing techniques could enhance internal uniformity and dense degree of the lead alloy, and improve the mechanical properties of the alloy. (3) Applying other types of anodes, such as titanium-based anodes, aluminum-based anodes and carbon fiber anodes, could prevent the problems caused by the inherent properties of the lead alloy. Besides, while introducing different anode improvement methods, the preparation process and electrocatalytic mechanism were also mentioned, and the direction for the development trend of new anodes in the future was pointed out.

Cite this article

TAO Yi , CHEN Bu-ming , HUANG Hui , GUO Zhong-cheng , HE Ya-peng . Research Progress of New Anodes for Zinc Electrodeposition[J]. Materials Protection, 2023 , 56(6) : 142 -155 . DOI: 10.16577/j.issn.1001-1560.2023.0146

References

[1] ZHANG W, HOULACHI G, GHALI E. Potentiostatic studies of the influence of temperature on lead-silver anodes during electrowinning and decay period[J]. Canadian Metallurgical Quarterly, 2019,58(1):1-13.
[2] YANG H T, LIU H R, GUO Z C, et al. Electrochemical behavior of rolled Pb-0.8%Ag anodes[J]. Hydrometallurgy, 2013, 140:144-150.
[3] HE S W, XU R D, SUN L, et al. Electrochemical characteristics of Co3O4-doped β-PbO2 composite anodes used in long-period zinc electrowinning[J]. Hydrometallurgy, 2020, 194:105357.
[4] CHEN B M, WANG S C, LIU J H, et al. Corrosion resistance mechanism of a novel porous Ti/Sn-Sb-RuOx/β-PbO2 anode for zinc electrowinning[J]. Corrosion Science, 2018, 144:136-144.
[5] LIU J, XU J, HAN Z H. A comparative study of lead alloy electrode and CF/β-PbO2 electrode for zinc electrowinning[J]. ECS Journal of Solid State Science and Technology, 2020, 9(4):041012.
[6] NAKISA S, AHMADI N P, MOGHADDAM J, et al. Study of corrosion behavior of virgin and recycled Pb anodes used in zinc electrowinning industry[J]. Anti-Corrosion Methods and Materials, 2020,67(6):529-536.
[7] CLANCY M, BETTLES C J, STUART A, et al. The influence of alloying elements on the electrochemistry of lead anodes for electrowinning of metals: A review[J]. Hydrometallurgy, 2013, 131-132:144-157.
[8] ALAMDARI E K, DARVISHI D, KHOSHKHOO M S, et al. On the way to develop co-containing lead anodes for zinc electrowinning[J]. Hydrometallurgy, 2012, 119-120:77-86.
[9] IVANOV I, STEFANOV Y, NONCHEVA Z, et al. Insoluble anodes used in hydrometallurgy: Part I. Corrosion resistance of lead and lead alloy anodes[J]. Hydrometallurgy, 2000, 57(2):109-124.
[10] LAI Y, JIANG L, JIE L, et al. A novel porous Pb-Ag anode for energy-saving in zinc electrowinning: Part II: Preparation and pilot plant tests of large size anode[J]. Hydrometallurgy, 2010, 102(1-4):81-86.
[11] NAKISA S, PARVINI A N, MOGHADDA J. Electrochemical study of Pb anodes for zinc electrowinning industry[J]. Surface Engineering, 2014, 30(9):650-655.
[12] 周松兵, 郭忠诚, 陈步明,等. 电沉积铅银合金阳极与铸造铅银合金阳极的性能[J]. 材料保护, 2013, 46(8):8-11.
ZHOU S B, GUO Z C, CHEN B M, et al. Comparison of Performance of Electrodeposited Lead-Silver Anode and Cast Lead-Silver Alloy Anode[J]. Materials Protection, 2013, 46(8):8-11.
[13] 梅光贵, 刘勇刚. 锌电解中铅银阳极的电化学行为[J]. 中南工业大学学报, 1998, 29(4):4.
MEI G G, LIU Y G. Investigation on the electrochemical behavior of Pb-Ag anode[J]. Journal of Central South University(Science and Technology), 1998, 29(4):4.
[14] 张 璋, 陈步明, 郭忠诚,等. 湿法冶金中新型铅基阳极材料的研究进展[J]. 材料导报, 2016, 30(19): 112-118.
ZHANG Z, CHEN B M, GUO Z C, et al. A Review of the novel lead-based anode material used for hydrometallurgy[J]. Materials Reports, 2016,30(19):112-118.
[15] PAVLOV D. Mechanism of the elementary electrochemical processes taking place during oxygen evolution on the lead dioxide electrode[J]. Journal of the Electrochemical Society, 1996, 143(11): 3 616-3 629.
[16] MONAHOV B, PAVLOV D, PETROV D. Influence of Ag as alloy additive on the oxygen evolution reaction on Pb/PbO2 electrode[J]. Journal of Power Sources, 2000, 85(1):59-62.
[17] 周松兵, 陈步明, 杨海涛,等. 各种变质剂对炼制铅合金性能的影响[J]. 材料保护, 2013, 46(8):47-51.
ZHOU S B, CHEN B M, YANG H T, et al. Effect of Various Leavening Agents on Properties of Refined Lead Alloy- A Review[J]. Materials Protection, 2013, 46(8):47-51.
[18] WANG W, YUAN T, LI R, et al. Electrochemical behaviors of powder-processed Pb-Ag anodes[J]. JOM: the Journal of the Minerals, Metals and Materials Society, 2019, 71(8): 2 498-2 504.
[19] 宋宏伟, 黄 惠, 陈步明,等. 锌电积用铅合金复合阳极性能的影响因素[J]. 材料保护, 2017, 50(5):75-84.
SONG H W, HUANG H, CHEN B M, et al. Influence Factors of Performance of Lead Alloy Composite Anodes in Zinc Electrowinning[J]. Materials Protection, 2017,50(5):75-84.
[20] TAGUCHI M. Anode potential and AC impedance characteristics of the Pb-Ag alloy and Pb-Sn alloy anodes[J]. Metallurgical Review of Mmij, 1996, 13(2):52-64.
[21] 衷水平, 赖延清, 蒋良兴,等. 锌电积用Pb-Ag-Ca-Sr四元合金阳极的阳极极化行为[J]. 中国有色金属学报, 2008, 18(7):1 342-1 346.
ZHONG S P, LAI Y Q, JIANG L X, et al. Anodization behavior on Pb-Ag-Ca-Sr alloy during zinc electrowinning[J]. The Chinese Journal of Nonferrous Metals, 2008, 18(7): 1 342-1 346.
[22] 张永春, 郭忠诚, 陈步明. 电积锌用各类阳极中合金元素对其性能影响的研究现状[J]. 材料保护, 2014, 47(3):40-44.
ZHANG Y C, GUO Z C, CHEN B M, et al. Effect of Alloying Elements on Performance of Various Anodes Used for Zinc Electrowinning- A Review[J]. Materials Protection, 2014,47(3):40-44.
[23] FELDER A, PRENGAMAN R D. Lead alloys for permanent anodes in the nonferrous metals industry[J]. JOM, 2006, 58(10):28-31.
[24] HUANG J, DING Y F, SU X D, et al. Industrial application of Pb-Ag-Ca anode with surface passivation for zinc electrowinning[J]. Advanced Materials Research, 2014, 941-944:1 398-1 401.
[25] WANG Y, LI J, TIAN Y. Influence of alloy element addition on the nucleation mechanism of the lead alloy surface and its oxide film properties[J]. Journal of Alloys and Compounds, 2018, 750: 636-643.
[26] KOOP M J, RAND D, CULPIN B. A guide to the influence of bismuth on lead/acid battery performance[J]. Journal of Power Sources, 1993, 45(3):365-377.
[27] RASHKOV S, DOBREV T, NONCHEVA Z, et al. Lead-cobalt anodes for electrowinning of zinc from sulphate electrolytes[J]. Hydrometallurgy Amsterdam, 1999,52:223-230.
[28] 王秀凯, 陈 胜, 陈步明,等. 铜电积用节能阳极及电解液离子影响的研究现状[J]. 材料保护, 2020, 53(8):117-125.
WANG X K, CHEN S, CHEN B M, et al. Study Status of Energy Saving Anodes and Electrolyte Ions for Copper Electrowinning[J]. Materials Protection, 2020, 53(8):117-125.
[29] HAN S. An RDE research on the preparation process of β-PbO2-CoOx composite coatings[J]. International Journal of Electrochemical Science, 2016, 11(10): 8 391-8 404.
[30] ZHANG J S, XU R D, YU B H, et al. Study on the properties of Pb-Co3O4-PbO2 composite inert anodes prepared by vacuum hot pressing technique[J]. RSC Advances, 2017,7: 49 166-49 176.
[31] 张永春, 郭忠诚, 杨海涛,等. Al/Pb-Ag-Co阳极中的Co在锌电沉积过程中的催化机理[J]. 材料保护, 2013, 46(9):7-16.
ZHANG Y C, GUO Z C, YANG H T, et al. Catalytic Mechanism of Cobalt in Electroplated Lead-Silver-Cobalt Coating Anode on Aluminum Sheet during Zinc Electrodeposition[J]. Materials Protection, 2013, 46(9):7-16.
[32] ZHANG Y, GUO Z. Electrochemical properties and microstructure of Pb-Co anodes during electrolysis in H2SO4 solution[J]. Journal of Alloys and Compounds, 2019, 780: 131-136.
[33] LIU J N, BIAN D, ZHENG Y F,et al. Comparative in vitro study on binary Mg-RE (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) alloy systems[J]. Acta Biomaterialia, 2020, 102:508-528.
[34] LIU W, CAO F, CHANG L, et al. Effect of rare earth element Ce and La on corrosion behavior of AM60 magnesium alloy[J]. Corrosion Science, 2009, 51(6):1 334-1 343.
[35] 朱茂兰, 衷水平, 涂 弢,等.稀土Pr对有色金属电积用Pb基阳极性能的影响[J].稀有金属,2015,39(8): 720-726.
ZHU M L, ZHONG S P, TU T, et al. Properties of lead based anode for nonferrous electrowinning with different Pr contents[J]. Chinese Journal of Rare Metals,2015,39(8):720-726.
[36] 朱茂兰,涂 弢,朱根松,等. Gd对有色金属电积用铅基阳极性能的影响[J]. 中国有色金属学报, 2014(11): 2 821-2 826.
ZHU M L, TU T, ZHU G S, et al. Influence of Gd on properties of Pb based anode for nonferrous electrowinning[J]. The Chinese Journal of Nonferrous Metals, 2014(11): 2 821-2 826.
[37] 洪 波,蒋良兴,吕晓军,等. Nd对锌电积用Pb-Ag合金阳极性能的影响[J]. 中国有色金属学报, 2012, 22(4):1 126-1 131.
HONG B, JIANG L X, LV X J, et al. Influence of Nd on Pb-Ag alloy anode for zinc electrowinning[J].The Chinese Journal of Nonferrous Metals, 2012, 22(4):1 126-1 131.
[38] ZHONG X C, GUI J F, YU X Y, et al. Influence of alloying element Nd on the electrochemical behavior of Pb-Ag anode in H2SO4 solution[J]. Acta Physico-Chimica Sinica, 2014, 30(3):492-499.
[39] 李万千, 唐有根, 宋永江,等. 添加铈对铅钙合金在硫酸溶液中电化学性能的影响[J]. 化学学报, 2008, 66(16):1 857-1 862.
LI W Q, TANG Y G, SONG Y J, et al. Effect of cerium addition on electrochemical performances of Pb-Ca alloy in H2SO4[J]. Acta Chimica Sinica, 2008, 66(16): 1 857-1 862.
[40] WANG J, HOU G, CAO H, et al. Influence of Sm-La on microstructure and electrochemical properties of Pb-Base grid alloys[J]. Journal of the Chinese Society of Rare Earths, 2012, 30(3):337-342.
[41] 李 劼,洪 波,倪恒发,等.铅基多孔材料的反重力渗流铸造工艺与平均孔径测试[J].中南大学学报(自然科学版),2011,42(7):1 833-1 840.
LI J, HONG B, NI H F, et al. Castingprocess of counter-gravity infiltration and measurement of average aperture of lead-based porous material[J]. Journal of Central South University(Science and Technology),2011,42(7): 1 833-1 840.
[42] KIM Y K, QIN R S. Effect of two-liquid casting on the microstructure of Sn-Pb Alloys[J]. Materials Science Forum, 2010, 649:415-418.
[43] KIM J H, JIN H A, HUH S H, et al. The influence of casting process on mechanical properties and corrosion behavior of Pb-1.35wt.%Sn-0.1wt.%Ca alloy[J]. Scripta Materialia, 2000, 43(7):617-621.
[44] WAN D Q. Stirred casting Al-Pb monotectic alloys with high damping capacity[J]. Rare Metals, 2015(8):560-563.
[45] ZHONG X C, YU X Y, LIU Z W, et al. Comparison of corrosion and oxygen evolution behaviors between cast and rolled Pb-Ag-Nd anodes[J]. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(10): 1 067-1 075.
[46] 李建平,姜洪锋,毛大恒,等.轧制变形量对铸轧铅合金板带性能的影响[J].材料工程, 2012(4): 17-21.
LI J P, JIANG H F, MAO D H, et al. Effect of rolling deformation on properties of roll casting lead alloy strips[J].Journal of Materials Engineering, 2012(4): 17-21.
[47] KARBASI M, ALAMDARI E K, DEHKORDI E A, et al. Electrochemical and anodic behaviors of MnO2/Pb nanocomposite in zinc electrowinning[J]. Journal of Applied Electrochemistry, 2018,48(3):379-390.
[48] XU Y, HAN Z H, ZHU P X, et al. Effects of grain refinement on microstructure and electrochemical properties of Pb-(0.5wt%)Ag anodes for zinc electrowinning[J]. Materials Today Communications, 2020, 25: 101381.
[49] JIN S, GHALI E, ST-AMANT G, et al. The effect of microstructure on the electrochemical behavior of lead-silver alloy anodes during zinc electrowinning:Lead-Zinc 2000 Symposium[C]. Pittsburgh: The Minerals, Metals and Materials Society, 2000:845-854.
[50] 秦春段, 苏 勇, 刘福东. 冷却速度对铅酸蓄电池用Pb-Ca合金性能的影响[J]. 化学学报, 2010, 68(22):2 363-2 366.
QIN C D, SU Y, LIU F D. The effect of solidification cooling rates on the performance of Pb-Ca alloy for Lead-acid battery[J]. Acta Chimica Sinica, 2010, 68(22):2 363-2 366.
[51] ZHOU X Y, WANG S, YANG J, et al. Effect of cooling ways on properties of Al/Pb-0.2%Ag rolled alloy for zinc electrowinning[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(9): 2 096-2 103.
[52] KAMAL M, EL S G. Effect of cooling speed on structure and properties of rapidly solidified Pb-25wt% Sn alloy[J]. Radiation Effect and Defects in Solids, 2007, 162(9): 691-696.
[53] NEWHAM R H. Corrosion rates of lead based anodes for zinc electrowinning at high current densities[J].J Appl Electrochem,1992,22(2),116.
[54] SURASSAWADEE P, TORRANIN C, NOPPADOL Y, et al. Surface structure of Pb-0.5%Ag anode used in zinc electrowinning[J]. Chiang Mai J Sci, 2006,33(1):67-77.
[55] MA R X, CHENG S Y, ZHANG X Y , et al. Oxygen evolution and corrosion behavior of low-MnO2-content Pb-MnO2 composite anodes for metal electrowinning[J]. Hydrometallurgy, 2016, 159: 6-11.
[56] ZHONG X C, WANG R X, XU Z F , et al. Influence of Mn2+ on the performance of Pb-Ag anodes in fluoride/chloride-containing H2SO4 solutions[J]. Hydrometallurgy, 2017,174:195-201.
[57] ZHONG X C, JIANG L X, LIU F Y, et al. Anodic passivation of Pb-Ag-Nd anode in fluoride-containing H2SO4 solution[J]. Journal of Central South University, 2015, 22(8):2 894-2 901.
[58] LEE J, JEONG B, OCON J D. Oxygen electrocatalysis in chemical energy conversion and storage technologies[J]. Current Applied Physics, 2013, 13(2):309-321.
[59] ZHANG W, GHALI E, HOULACHI G. Review of oxide coated catalytic titanium anodes performance for metal electrowinning[J]. Hydrometallurgy, 2017, 169:456-467.
[60] RAMYA T, ANBAZHAGI M, MUTHUKUMAR M. Electrochemical oxidation of fipronil contaminated wastewater by RuO2/IrO2/TaO2 coated titanium anodes and sorbent nano hydroxyapatite[J]. Materials Today Proceedings, 2016, 3(6):2 509-2 517.
[61] YAN Z W, MENG H M. Effect of heat treatment of titanium substrates on the properties of IrO2-Ta2O5 coated anodes[J]. Rare Metals, 2011, 30(5):439-446.
[62] YAN Z W, ZHAO Y W, ZHANG Z Z, et al. A study on the performance of IrO2-Ta2O5 coated anodes with surface treated Ti substrates[J]. Electrochinica Acta, 2015, 157: 345-350.
[63] CHANG L H, CHEN S, XIE X H, et al. Effects of Zr content on electrochemical performance of Ti/Sn-Ru-Co-ZrOx electrodes[J]. International Journal of Minerals, Metallurgy and Materials, 2021, 29(12): 2 181-2 188.
[64] ZHANG C, LIU J H, CHEN B M. Effect of CeO2 and graphite powder on the electrochemical performance of Ti/PbO2 anode for zinc electrowinning[J]. Ceramics International, 2018, 44(16):19 735-19 742.
[65] 宁慧利, 辛永磊, 许立坤,等. 含石墨烯IrO2-Ta2O5涂层钛阳极性能改进研究[J]. 稀有金属材料与工程, 2016, 45(4):946-951.
NING H L, XIN Y L, XU L K, et al. Properties of IrO2-Ta2O5 coated titanium anodes modified with graphene[J]. Rare Metal Materials and Engineering, 2016, 45(4):946-951.
[66] 闫文凯, 陈步明, 冷 和,等. 铝棒低银铅合金表面陶瓷化复合阳极的制备与性能[J]. 工程科学学报, 2019, 41(10):1 315-1 323.
YAN W K, CHEN B M, LENG H, et al. Preparation and properties of Al-rod-Pb-0. 2% Ag composite anode by surface ceramization[J]. Chinese Journal of Engineering, 2019, 41(10):1 315-1 323.
[67] YANG J, CHEN B M, GUO Z C, et al. Properties of Al/conductive coating/α-PbO2-CeO2-TiO2/β-PbO2-WC-ZrO2 composite anode for zinc electrowinning[J]. Journal of Wuhan University of Technology(Materials Science), 2017,32(3):538-546.
[68] 曹 勇,焦增凯, SULTAN A, 等. 新型节能Pb(1%Ag)/Al层状复合阳极电化学分析和电位分布模拟[J]. 材料导报,2020,34(18):18 014-18 018.
CAO Y, JIAO Z K, SULTAN A, et al. Electrochemical analysis and potential distribution simulation of a energy-saving Pb(1%Ag) / Al layered composite anode[J]. Materials Reports,2020,34(18):18 014-18 018.
[69] ZHOU X Y. Electrochemical performance of a new type aluminum foam/Pb-0.6 wt% Ag alloy composite anode for zinc electrowinning industry[J]. Rare Metal Materials and Engineering,2018,47(10):3 008-3 014.
[70] HAN Z H, XU L, KANNAN C S, et al. Preparation and electrochemical properties of Al/TiB2/β-PbO2 layered composite electrode materials for electrowinning of nonferrous metals - ScienceDirect[J]. Ceramics International, 2018, 44(15):18 420-18 428.
[71] 许 健, 周生刚, 竺培显,等. 新型碳纤维电极的表面修饰技术及其应用现状[J]. 材料导报, 2015, 29(13):6.
XU J, ZHOU S G, ZHU P X, et al. Surface Modification and Application Status of the New Carbon Fiber Electrode[J]. Materials Reports, 2015,29(7):34-39.
[72] 孙书杰, 刘秀军, 冯志海,等. 碳纤维表面化学镀的研究进展[J]. 材料导报, 2014, 28(3):42-46.
SUN S J, LIU X J, FENG Z H, et al. Development of Electroless Plating on Surface of Carbon Fibers[J]. Materials Reports, 2014,28(3): 42-46.
[73] LIU J H, XU J, HAN Z H. A Comparative Study of Lead Alloy Electrode and CF/β-PbO2 Electrode for Zinc Electrowinning[J]. ECS Journal of Solid State Science and Technology, 2020, 9(4): 041012.
[74] LIU J H, LIU F H, XU J, et al. Effect of current density on interface structure and performance of CF/β-PbO2 electrodes during zinc electrowinning[J]. Ceramics International, 2020, 46( 2): 2 403-2 408.
[75] 许 健, 周生刚, 竺培显,等. 碳纤维基体层状复合电极材料的电化学性能[J]. 功能材料, 2016, 47(10): 10 118-10 123.
XU J, ZHOU S G, ZHU P X, et al. Electrochemical properties of layered composite electrode materials based on carbon fiber[J]. Journal of Functional Materials, 2016, 10(47): 10 118-10 123.
[76] RAMS J, URENA A, ESCALERA M D, et al. Electroless nickel coated short carbon fibres in aluminium matrix composites[J]. Composites Part A Applied Science and Manufacturing, 2007, 38(2):566-575.
[77] XU J C, YU H, XIA L, et al. Effects of some factors on the tribological properties of the short carbon fiber-reinforced copper composite[J]. Materials and Design, 2004,25:489-493.
Outlines

/