[1] ZHANG W, HOULACHI G, GHALI E. Potentiostatic studies of the influence of temperature on lead-silver anodes during electrowinning and decay period[J]. Canadian Metallurgical Quarterly, 2019,58(1):1-13.
[2] YANG H T, LIU H R, GUO Z C, et al. Electrochemical behavior of rolled Pb-0.8%Ag anodes[J]. Hydrometallurgy, 2013, 140:144-150.
[3] HE S W, XU R D, SUN L, et al. Electrochemical characteristics of Co3O4-doped β-PbO2 composite anodes used in long-period zinc electrowinning[J]. Hydrometallurgy, 2020, 194:105357.
[4] CHEN B M, WANG S C, LIU J H, et al. Corrosion resistance mechanism of a novel porous Ti/Sn-Sb-RuOx/β-PbO2 anode for zinc electrowinning[J]. Corrosion Science, 2018, 144:136-144.
[5] LIU J, XU J, HAN Z H. A comparative study of lead alloy electrode and CF/β-PbO2 electrode for zinc electrowinning[J]. ECS Journal of Solid State Science and Technology, 2020, 9(4):041012.
[6] NAKISA S, AHMADI N P, MOGHADDAM J, et al. Study of corrosion behavior of virgin and recycled Pb anodes used in zinc electrowinning industry[J]. Anti-Corrosion Methods and Materials, 2020,67(6):529-536.
[7] CLANCY M, BETTLES C J, STUART A, et al. The influence of alloying elements on the electrochemistry of lead anodes for electrowinning of metals: A review[J]. Hydrometallurgy, 2013, 131-132:144-157.
[8] ALAMDARI E K, DARVISHI D, KHOSHKHOO M S, et al. On the way to develop co-containing lead anodes for zinc electrowinning[J]. Hydrometallurgy, 2012, 119-120:77-86.
[9] IVANOV I, STEFANOV Y, NONCHEVA Z, et al. Insoluble anodes used in hydrometallurgy: Part I. Corrosion resistance of lead and lead alloy anodes[J]. Hydrometallurgy, 2000, 57(2):109-124.
[10] LAI Y, JIANG L, JIE L, et al. A novel porous Pb-Ag anode for energy-saving in zinc electrowinning: Part II: Preparation and pilot plant tests of large size anode[J]. Hydrometallurgy, 2010, 102(1-4):81-86.
[11] NAKISA S, PARVINI A N, MOGHADDA J. Electrochemical study of Pb anodes for zinc electrowinning industry[J]. Surface Engineering, 2014, 30(9):650-655.
[12] 周松兵, 郭忠诚, 陈步明,等. 电沉积铅银合金阳极与铸造铅银合金阳极的性能[J]. 材料保护, 2013, 46(8):8-11.
ZHOU S B, GUO Z C, CHEN B M, et al. Comparison of Performance of Electrodeposited Lead-Silver Anode and Cast Lead-Silver Alloy Anode[J]. Materials Protection, 2013, 46(8):8-11.
[13] 梅光贵, 刘勇刚. 锌电解中铅银阳极的电化学行为[J]. 中南工业大学学报, 1998, 29(4):4.
MEI G G, LIU Y G. Investigation on the electrochemical behavior of Pb-Ag anode[J]. Journal of Central South University(Science and Technology), 1998, 29(4):4.
[14] 张 璋, 陈步明, 郭忠诚,等. 湿法冶金中新型铅基阳极材料的研究进展[J]. 材料导报, 2016, 30(19): 112-118.
ZHANG Z, CHEN B M, GUO Z C, et al. A Review of the novel lead-based anode material used for hydrometallurgy[J]. Materials Reports, 2016,30(19):112-118.
[15] PAVLOV D. Mechanism of the elementary electrochemical processes taking place during oxygen evolution on the lead dioxide electrode[J]. Journal of the Electrochemical Society, 1996, 143(11): 3 616-3 629.
[16] MONAHOV B, PAVLOV D, PETROV D. Influence of Ag as alloy additive on the oxygen evolution reaction on Pb/PbO2 electrode[J]. Journal of Power Sources, 2000, 85(1):59-62.
[17] 周松兵, 陈步明, 杨海涛,等. 各种变质剂对炼制铅合金性能的影响[J]. 材料保护, 2013, 46(8):47-51.
ZHOU S B, CHEN B M, YANG H T, et al. Effect of Various Leavening Agents on Properties of Refined Lead Alloy- A Review[J]. Materials Protection, 2013, 46(8):47-51.
[18] WANG W, YUAN T, LI R, et al. Electrochemical behaviors of powder-processed Pb-Ag anodes[J]. JOM: the Journal of the Minerals, Metals and Materials Society, 2019, 71(8): 2 498-2 504.
[19] 宋宏伟, 黄 惠, 陈步明,等. 锌电积用铅合金复合阳极性能的影响因素[J]. 材料保护, 2017, 50(5):75-84.
SONG H W, HUANG H, CHEN B M, et al. Influence Factors of Performance of Lead Alloy Composite Anodes in Zinc Electrowinning[J]. Materials Protection, 2017,50(5):75-84.
[20] TAGUCHI M. Anode potential and AC impedance characteristics of the Pb-Ag alloy and Pb-Sn alloy anodes[J]. Metallurgical Review of Mmij, 1996, 13(2):52-64.
[21] 衷水平, 赖延清, 蒋良兴,等. 锌电积用Pb-Ag-Ca-Sr四元合金阳极的阳极极化行为[J]. 中国有色金属学报, 2008, 18(7):1 342-1 346.
ZHONG S P, LAI Y Q, JIANG L X, et al. Anodization behavior on Pb-Ag-Ca-Sr alloy during zinc electrowinning[J]. The Chinese Journal of Nonferrous Metals, 2008, 18(7): 1 342-1 346.
[22] 张永春, 郭忠诚, 陈步明. 电积锌用各类阳极中合金元素对其性能影响的研究现状[J]. 材料保护, 2014, 47(3):40-44.
ZHANG Y C, GUO Z C, CHEN B M, et al. Effect of Alloying Elements on Performance of Various Anodes Used for Zinc Electrowinning- A Review[J]. Materials Protection, 2014,47(3):40-44.
[23] FELDER A, PRENGAMAN R D. Lead alloys for permanent anodes in the nonferrous metals industry[J]. JOM, 2006, 58(10):28-31.
[24] HUANG J, DING Y F, SU X D, et al. Industrial application of Pb-Ag-Ca anode with surface passivation for zinc electrowinning[J]. Advanced Materials Research, 2014, 941-944:1 398-1 401.
[25] WANG Y, LI J, TIAN Y. Influence of alloy element addition on the nucleation mechanism of the lead alloy surface and its oxide film properties[J]. Journal of Alloys and Compounds, 2018, 750: 636-643.
[26] KOOP M J, RAND D, CULPIN B. A guide to the influence of bismuth on lead/acid battery performance[J]. Journal of Power Sources, 1993, 45(3):365-377.
[27] RASHKOV S, DOBREV T, NONCHEVA Z, et al. Lead-cobalt anodes for electrowinning of zinc from sulphate electrolytes[J]. Hydrometallurgy Amsterdam, 1999,52:223-230.
[28] 王秀凯, 陈 胜, 陈步明,等. 铜电积用节能阳极及电解液离子影响的研究现状[J]. 材料保护, 2020, 53(8):117-125.
WANG X K, CHEN S, CHEN B M, et al. Study Status of Energy Saving Anodes and Electrolyte Ions for Copper Electrowinning[J]. Materials Protection, 2020, 53(8):117-125.
[29] HAN S. An RDE research on the preparation process of β-PbO2-CoOx composite coatings[J]. International Journal of Electrochemical Science, 2016, 11(10): 8 391-8 404.
[30] ZHANG J S, XU R D, YU B H, et al. Study on the properties of Pb-Co3O4-PbO2 composite inert anodes prepared by vacuum hot pressing technique[J]. RSC Advances, 2017,7: 49 166-49 176.
[31] 张永春, 郭忠诚, 杨海涛,等. Al/Pb-Ag-Co阳极中的Co在锌电沉积过程中的催化机理[J]. 材料保护, 2013, 46(9):7-16.
ZHANG Y C, GUO Z C, YANG H T, et al. Catalytic Mechanism of Cobalt in Electroplated Lead-Silver-Cobalt Coating Anode on Aluminum Sheet during Zinc Electrodeposition[J]. Materials Protection, 2013, 46(9):7-16.
[32] ZHANG Y, GUO Z. Electrochemical properties and microstructure of Pb-Co anodes during electrolysis in H2SO4 solution[J]. Journal of Alloys and Compounds, 2019, 780: 131-136.
[33] LIU J N, BIAN D, ZHENG Y F,et al. Comparative in vitro study on binary Mg-RE (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) alloy systems[J]. Acta Biomaterialia, 2020, 102:508-528.
[34] LIU W, CAO F, CHANG L, et al. Effect of rare earth element Ce and La on corrosion behavior of AM60 magnesium alloy[J]. Corrosion Science, 2009, 51(6):1 334-1 343.
[35] 朱茂兰, 衷水平, 涂 弢,等.稀土Pr对有色金属电积用Pb基阳极性能的影响[J].稀有金属,2015,39(8): 720-726.
ZHU M L, ZHONG S P, TU T, et al. Properties of lead based anode for nonferrous electrowinning with different Pr contents[J]. Chinese Journal of Rare Metals,2015,39(8):720-726.
[36] 朱茂兰,涂 弢,朱根松,等. Gd对有色金属电积用铅基阳极性能的影响[J]. 中国有色金属学报, 2014(11): 2 821-2 826.
ZHU M L, TU T, ZHU G S, et al. Influence of Gd on properties of Pb based anode for nonferrous electrowinning[J]. The Chinese Journal of Nonferrous Metals, 2014(11): 2 821-2 826.
[37] 洪 波,蒋良兴,吕晓军,等. Nd对锌电积用Pb-Ag合金阳极性能的影响[J]. 中国有色金属学报, 2012, 22(4):1 126-1 131.
HONG B, JIANG L X, LV X J, et al. Influence of Nd on Pb-Ag alloy anode for zinc electrowinning[J].The Chinese Journal of Nonferrous Metals, 2012, 22(4):1 126-1 131.
[38] ZHONG X C, GUI J F, YU X Y, et al. Influence of alloying element Nd on the electrochemical behavior of Pb-Ag anode in H2SO4 solution[J]. Acta Physico-Chimica Sinica, 2014, 30(3):492-499.
[39] 李万千, 唐有根, 宋永江,等. 添加铈对铅钙合金在硫酸溶液中电化学性能的影响[J]. 化学学报, 2008, 66(16):1 857-1 862.
LI W Q, TANG Y G, SONG Y J, et al. Effect of cerium addition on electrochemical performances of Pb-Ca alloy in H2SO4[J]. Acta Chimica Sinica, 2008, 66(16): 1 857-1 862.
[40] WANG J, HOU G, CAO H, et al. Influence of Sm-La on microstructure and electrochemical properties of Pb-Base grid alloys[J]. Journal of the Chinese Society of Rare Earths, 2012, 30(3):337-342.
[41] 李 劼,洪 波,倪恒发,等.铅基多孔材料的反重力渗流铸造工艺与平均孔径测试[J].中南大学学报(自然科学版),2011,42(7):1 833-1 840.
LI J, HONG B, NI H F, et al. Castingprocess of counter-gravity infiltration and measurement of average aperture of lead-based porous material[J]. Journal of Central South University(Science and Technology),2011,42(7): 1 833-1 840.
[42] KIM Y K, QIN R S. Effect of two-liquid casting on the microstructure of Sn-Pb Alloys[J]. Materials Science Forum, 2010, 649:415-418.
[43] KIM J H, JIN H A, HUH S H, et al. The influence of casting process on mechanical properties and corrosion behavior of Pb-1.35wt.%Sn-0.1wt.%Ca alloy[J]. Scripta Materialia, 2000, 43(7):617-621.
[44] WAN D Q. Stirred casting Al-Pb monotectic alloys with high damping capacity[J]. Rare Metals, 2015(8):560-563.
[45] ZHONG X C, YU X Y, LIU Z W, et al. Comparison of corrosion and oxygen evolution behaviors between cast and rolled Pb-Ag-Nd anodes[J]. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(10): 1 067-1 075.
[46] 李建平,姜洪锋,毛大恒,等.轧制变形量对铸轧铅合金板带性能的影响[J].材料工程, 2012(4): 17-21.
LI J P, JIANG H F, MAO D H, et al. Effect of rolling deformation on properties of roll casting lead alloy strips[J].Journal of Materials Engineering, 2012(4): 17-21.
[47] KARBASI M, ALAMDARI E K, DEHKORDI E A, et al. Electrochemical and anodic behaviors of MnO2/Pb nanocomposite in zinc electrowinning[J]. Journal of Applied Electrochemistry, 2018,48(3):379-390.
[48] XU Y, HAN Z H, ZHU P X, et al. Effects of grain refinement on microstructure and electrochemical properties of Pb-(0.5wt%)Ag anodes for zinc electrowinning[J]. Materials Today Communications, 2020, 25: 101381.
[49] JIN S, GHALI E, ST-AMANT G, et al. The effect of microstructure on the electrochemical behavior of lead-silver alloy anodes during zinc electrowinning:Lead-Zinc 2000 Symposium[C]. Pittsburgh: The Minerals, Metals and Materials Society, 2000:845-854.
[50] 秦春段, 苏 勇, 刘福东. 冷却速度对铅酸蓄电池用Pb-Ca合金性能的影响[J]. 化学学报, 2010, 68(22):2 363-2 366.
QIN C D, SU Y, LIU F D. The effect of solidification cooling rates on the performance of Pb-Ca alloy for Lead-acid battery[J]. Acta Chimica Sinica, 2010, 68(22):2 363-2 366.
[51] ZHOU X Y, WANG S, YANG J, et al. Effect of cooling ways on properties of Al/Pb-0.2%Ag rolled alloy for zinc electrowinning[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(9): 2 096-2 103.
[52] KAMAL M, EL S G. Effect of cooling speed on structure and properties of rapidly solidified Pb-25wt% Sn alloy[J]. Radiation Effect and Defects in Solids, 2007, 162(9): 691-696.
[53] NEWHAM R H. Corrosion rates of lead based anodes for zinc electrowinning at high current densities[J].J Appl Electrochem,1992,22(2),116.
[54] SURASSAWADEE P, TORRANIN C, NOPPADOL Y, et al. Surface structure of Pb-0.5%Ag anode used in zinc electrowinning[J]. Chiang Mai J Sci, 2006,33(1):67-77.
[55] MA R X, CHENG S Y, ZHANG X Y , et al. Oxygen evolution and corrosion behavior of low-MnO2-content Pb-MnO2 composite anodes for metal electrowinning[J]. Hydrometallurgy, 2016, 159: 6-11.
[56] ZHONG X C, WANG R X, XU Z F , et al. Influence of Mn2+ on the performance of Pb-Ag anodes in fluoride/chloride-containing H2SO4 solutions[J]. Hydrometallurgy, 2017,174:195-201.
[57] ZHONG X C, JIANG L X, LIU F Y, et al. Anodic passivation of Pb-Ag-Nd anode in fluoride-containing H2SO4 solution[J]. Journal of Central South University, 2015, 22(8):2 894-2 901.
[58] LEE J, JEONG B, OCON J D. Oxygen electrocatalysis in chemical energy conversion and storage technologies[J]. Current Applied Physics, 2013, 13(2):309-321.
[59] ZHANG W, GHALI E, HOULACHI G. Review of oxide coated catalytic titanium anodes performance for metal electrowinning[J]. Hydrometallurgy, 2017, 169:456-467.
[60] RAMYA T, ANBAZHAGI M, MUTHUKUMAR M. Electrochemical oxidation of fipronil contaminated wastewater by RuO2/IrO2/TaO2 coated titanium anodes and sorbent nano hydroxyapatite[J]. Materials Today Proceedings, 2016, 3(6):2 509-2 517.
[61] YAN Z W, MENG H M. Effect of heat treatment of titanium substrates on the properties of IrO2-Ta2O5 coated anodes[J]. Rare Metals, 2011, 30(5):439-446.
[62] YAN Z W, ZHAO Y W, ZHANG Z Z, et al. A study on the performance of IrO2-Ta2O5 coated anodes with surface treated Ti substrates[J]. Electrochinica Acta, 2015, 157: 345-350.
[63] CHANG L H, CHEN S, XIE X H, et al. Effects of Zr content on electrochemical performance of Ti/Sn-Ru-Co-ZrOx electrodes[J]. International Journal of Minerals, Metallurgy and Materials, 2021, 29(12): 2 181-2 188.
[64] ZHANG C, LIU J H, CHEN B M. Effect of CeO2 and graphite powder on the electrochemical performance of Ti/PbO2 anode for zinc electrowinning[J]. Ceramics International, 2018, 44(16):19 735-19 742.
[65] 宁慧利, 辛永磊, 许立坤,等. 含石墨烯IrO2-Ta2O5涂层钛阳极性能改进研究[J]. 稀有金属材料与工程, 2016, 45(4):946-951.
NING H L, XIN Y L, XU L K, et al. Properties of IrO2-Ta2O5 coated titanium anodes modified with graphene[J]. Rare Metal Materials and Engineering, 2016, 45(4):946-951.
[66] 闫文凯, 陈步明, 冷 和,等. 铝棒低银铅合金表面陶瓷化复合阳极的制备与性能[J]. 工程科学学报, 2019, 41(10):1 315-1 323.
YAN W K, CHEN B M, LENG H, et al. Preparation and properties of Al-rod-Pb-0. 2% Ag composite anode by surface ceramization[J]. Chinese Journal of Engineering, 2019, 41(10):1 315-1 323.
[67] YANG J, CHEN B M, GUO Z C, et al. Properties of Al/conductive coating/α-PbO2-CeO2-TiO2/β-PbO2-WC-ZrO2 composite anode for zinc electrowinning[J]. Journal of Wuhan University of Technology(Materials Science), 2017,32(3):538-546.
[68] 曹 勇,焦增凯, SULTAN A, 等. 新型节能Pb(1%Ag)/Al层状复合阳极电化学分析和电位分布模拟[J]. 材料导报,2020,34(18):18 014-18 018.
CAO Y, JIAO Z K, SULTAN A, et al. Electrochemical analysis and potential distribution simulation of a energy-saving Pb(1%Ag) / Al layered composite anode[J]. Materials Reports,2020,34(18):18 014-18 018.
[69] ZHOU X Y. Electrochemical performance of a new type aluminum foam/Pb-0.6 wt% Ag alloy composite anode for zinc electrowinning industry[J]. Rare Metal Materials and Engineering,2018,47(10):3 008-3 014.
[70] HAN Z H, XU L, KANNAN C S, et al. Preparation and electrochemical properties of Al/TiB2/β-PbO2 layered composite electrode materials for electrowinning of nonferrous metals - ScienceDirect[J]. Ceramics International, 2018, 44(15):18 420-18 428.
[71] 许 健, 周生刚, 竺培显,等. 新型碳纤维电极的表面修饰技术及其应用现状[J]. 材料导报, 2015, 29(13):6.
XU J, ZHOU S G, ZHU P X, et al. Surface Modification and Application Status of the New Carbon Fiber Electrode[J]. Materials Reports, 2015,29(7):34-39.
[72] 孙书杰, 刘秀军, 冯志海,等. 碳纤维表面化学镀的研究进展[J]. 材料导报, 2014, 28(3):42-46.
SUN S J, LIU X J, FENG Z H, et al. Development of Electroless Plating on Surface of Carbon Fibers[J]. Materials Reports, 2014,28(3): 42-46.
[73] LIU J H, XU J, HAN Z H. A Comparative Study of Lead Alloy Electrode and CF/β-PbO2 Electrode for Zinc Electrowinning[J]. ECS Journal of Solid State Science and Technology, 2020, 9(4): 041012.
[74] LIU J H, LIU F H, XU J, et al. Effect of current density on interface structure and performance of CF/β-PbO2 electrodes during zinc electrowinning[J]. Ceramics International, 2020, 46( 2): 2 403-2 408.
[75] 许 健, 周生刚, 竺培显,等. 碳纤维基体层状复合电极材料的电化学性能[J]. 功能材料, 2016, 47(10): 10 118-10 123.
XU J, ZHOU S G, ZHU P X, et al. Electrochemical properties of layered composite electrode materials based on carbon fiber[J]. Journal of Functional Materials, 2016, 10(47): 10 118-10 123.
[76] RAMS J, URENA A, ESCALERA M D, et al. Electroless nickel coated short carbon fibres in aluminium matrix composites[J]. Composites Part A Applied Science and Manufacturing, 2007, 38(2):566-575.
[77] XU J C, YU H, XIA L, et al. Effects of some factors on the tribological properties of the short carbon fiber-reinforced copper composite[J]. Materials and Design, 2004,25:489-493.