[1] 秦润之, 杜艳霞, 姜子涛. 高压直流输电系统对埋地金属管道的干扰研究现状[J]. 腐蚀科学与防护技术, 2016, 28(3):263-268.
QIN R Z, DU Y X, JIANG Z T. HVDC transmission system for buried metal pipes current status of interference research[J].Corrosion Science and Protection Technology,2016,28(3):263-268.
[2] 苏 磊, 赵丹丹, 傅晨钊.高压直流系统接地极电流的影响及抑制措施研究综述及展望[J]. 陕西电力, 2017,45(3):27-32.
SU L, ZHAO D D, FU C Z. Review and prospect on influence of grounding electrode current in HVDC system and its suppression method[J]. Shanxi Electric Power, 2017,45(3):27-32.
[3] 何衍和,肖磊石. 高压直流输电系统接地极对油气管道影响分析[J]. 贵州电力技术,2016,19(8):42-46.
HE Y H, XIAO L S. Summary analysis of the impact of HVDC grounding electrode on oil and gas pipelines[J]. Guizhou Electric Power, 2016, 19(8):42-46.
[4] 李丹丹.高压直流输电线路对某埋地金属管道的干扰规律研究[D].成都:西南石油大学,2014.
LI D D. Study on the interference law of HVDC transmission line to a buried metal pipeline[D]. Chengdu: Southwest Petroleum University,2014.
[5] 吴江伟,宋 鹏.高压入地电流对埋地管道电位的影响[J]. 电气工程,2017,5(2):196-203.
WU J W, SONG P. Effect of high voltage incoming current on potential of buried pipeline[J]. Electric Engineering,2017,5(2):196-203.
[6] 李振军.高压/特高压直流输电系统对埋地钢制管道干扰的现场测试与分析[J].腐蚀与防护,2017,38(2):142-146.
LI Z J. Field test and analysis of interference of high or ultra high voltage direct current transmission system to underground steel pipeline[J]. Corrosion & Protection,2017,38(2):142-146.
[7] 孙建桄, 曹国飞, 韩昌柴. 高压直流输电系统接地极对西气东输管道的影响[J]. 腐蚀与防护, 2017,38(8):631-636.
SUN J G,CAO G F, HAN C C. Influence of HVDC Transmission System Ground Electrode on West-East Gas Pipeline[J]. Corrosion & Protection. 2017,38(8):631-636.
[8] 程 明,张 平.鱼龙岭接地极入地电流对西气东输二线埋地钢制管道的影响分析[J]. 天然气与石油,2010,28(5):22-26.
CHENG M, ZHANG P. Analysis of influence of ground entry current of Yulong Ling ground pole on buried steel pipeline of West-East gas transmission[J]. Natural Gas and Oil,2010,28(5):22-26.
[9] 姜子涛, 曹国民, 钟 良,等. 城镇基础设施对油气管道的干扰规律及其识别方法[J]. 腐蚀与防护, 2018, 39(3):222-226.
JIANG Z T, CAO G M, ZHONG L, et al. The interference law of urban infrastructure to oil and gas pipeline and its identification method[J]. Corrosion & Protection,2018,39(3):222-226.
[10] 杨 超, 李兆玲, 杨任继,等. 高压直流接地极对埋地管道的干扰及防护[J]. 中国石油大学学报(自然科学版), 2017,41(6):167-170.
YANG C, LI Z L, YANG R J, et al. Interference and protection of buried pipelines due to HVDC grounding electrode[J]. Journal of China University of Petroleum, 2017,41(6):166-170.
[11] NICHOLSON P. High voltage direct current interference with underground/underwater pipelines:The 65th NACE annual conference[C]. Houston:NACE,2010.
[12] 蒋卡克,葛彩刚. 高压直流输电接地极对埋地管道的干扰及防护措施研究[J].石油化工腐蚀与防护,2019,36(5):13-19.
JIANG K K, GE C G. Interference of HVDC grounding electrode to buried pipelines and protective measures[J]. Petrochemical Corrosion and Protection, 2019,36(5):13-19.
[13] 顾清林, 姜永涛, 曹国飞,等. 高压直流接地极对埋地管道的干扰监测及影响规律[J]. 油气储运, 2021, 40(1):7-12.
GU Q L,JIANG Y T,CAO G F, et al. Interference monitoring and Influence Law of HVDC grounding pole to buried pipeline[J]. Oil & Gas Storage and Transportation, 2021, 40(1):7-12.
[14] 秦润之, 杜艳霞, 路民旭, 等. 高压直流干扰下X80钢在广东土壤中的干扰参数变化规律及腐蚀行为研究[J]. 金属学报, 2017, 54(6):886-894.
QIN R Z, DU Y X, LU M X, et al. Study of Interference Parameters Variation Regularity and Corrosion Behavior of X80 Steel in Guangdong Soil under High Voltage Direct Current Interference[J]. Acta Journal of Metal, 2017, 54(6): 886-894.
[15] DAI N W, CHEN Q M, ZHANG J X, et al. The corrosion behavior of steel exposed to a DC electric field in the simulated wet-dry cyclic environment[J]. Materials Chemistry and Physics,2017,192(5):190-197.
[16] 熊 娟, 张文艳,杜艳霞,等. 高压直流干扰下管线钢在西南土壤中的腐蚀规律研究[J].油气田地面工程,2019,38(12):97-102.
XIONG J, ZHANG W Y, DU Y X, et al. Corrosion law study on pipeline steel in southwestern soil under high voltage direct interference[J]. Oil and Gas Field Surface Engineering, 2019,38(12): 97-102.
[17] 应 斌. 高压直流输电系统接地极对长输管道安全运行的影响[J].油气田地面工程, 2014,5(7):23-24.
YING B. Influence of ground pole of HVDC system on safe operation of long distance transmission pipeline[J]. Oil and Gas Field Surface Engineering, 2014,5(7):23-24.
[18] GB/T 3805-2008,特低电压(ELV)限值[S].
GB/T 3805-2008, Extra low voltage (ELV) limit[S].
[19] LAGACE P J, HOULE J L, GERVAIS Y,et al. Evaluation of the voltage distribution around toroidal HVDC ground eletrodes in n-layer soils[J].IEEC Trans Power Deliv,1988,3(4):1 573-1 575.
[20] 陈水明, 施广德, 赵智大. 圆环形直流输电接地极电流场分析[J]. 高电压技术, 1994(1):3-7.
CHENG Y M, SHI G D, ZHAO Z D. Analysis of ground electrode current field of circular DC transmission[J]. High Voltage Technique,1994(1):3-7.
[21] 钱 成. 直流接地极入地电流对埋地金属管道的电磁影响分析[D]. 吉林:东北电力大学, 2018.
QIAN C. Research on the electromagnetic influence of ground current from DC earth electrode on the buried metal pipeline[D]. Jilin: Northeast Electric Power University,2018.
[22] 商善泽. 直流接地极入地电流对埋地金属管道腐蚀影响的研究[D]. 北京:华北电力大学(北京), 2016.
SHANG S Z. Research on the corrosion influence of ground current from DC earth electrode on the buried metal pipeline[D]. Beijing: North China Electric Power University(Beijing), 2016.
[23] 路民旭, 张 雷, 杜艳霞. 油气工业的腐蚀与控制[M]. 北京:化学工业出版社, 2015.
LU M X, ZHANG L, DU Y X. Corrosion and control in the oil and gas industry[M]. Beijing: Chemical Industry Press,2015.
[24] 钱海军, 刘小光, 张树霞,等. 管内阴极保护的数值模拟(Ⅱ)——有限差分法计算大口径管内的电位分布[J]. 化工机械, 1997,65(5):36-38.
QIAN H J, LIU X G, ZHANG S X, et al. Numerical simulation of cathodic protection in Tubes (Ⅱ) — Finite difference method for calculating potential distribution in large diameter tubes[J]. Chemical Machinery, 1997,65(5):36-38.
[25] 张鸣镝, 殷正安. 有限差分法计算海底管道阴极保护时的电位分布[J]. 中国腐蚀与防护学报, 1994, 14(1):77-81.
ZHNAG M D,YIN Z A. The finite difference method is used to calculate the potential distribution of submarine pipeline under cathodic protection[J]. Chinese Journal of Corrosion and Protection,1994,14(1):77-81.
[26] 邱 枫, 徐乃欣. 钢质贮罐底板外侧阴极保护时的电位分布[J]. 中国腐蚀与防护学报, 1996,8(1):29-36.
QIU F, XU N X. Potential distribution on the outside of steel tank bottom plate under cathodic protection[J]. Chinese Journal of Corrosion and Protection, 1996,8(1):29-36.
[27] MUNN W D. CATHODIC PROTECTION ATTAINS NEW RECORD[J]. Highways & Heavy Construction, 1989, 33(5):23-25.
[28] DEGIORGI V G, III E, LUCAS K E. Scale effects and verification of modeling of ship cathodic protection systems[J]. Engineering Analysis with Boundary Elements, 1998, 22(1):41-49.
[29] 梁旭巍, 吴中元, 孟宪级,等. 油田区域性阴极保护计算机辅助优化设计研究[J]. 天津纺织工学院学报, 1998,8(5):90-94.
LIANG X W, WU Z Y, MENG X J, et al. Study on computer aided optimization design of regional cathodic protection in oilfield[J]. Journal of Tianjin Textile Institute of Technology,1998,8(5):90-94.
[30] 古 彤, 白 锋, 岳 晨,等. 高压直流接地极入地电流对埋地金属管道的腐蚀影响[J]. 腐蚀与防护, 2019, 40(12):902-906.
GU T, BAI F, YUE C, et al. Effect of high voltage DC grounding current on buried metal pipeline corrosion[J]. Corrosion & Protection,2019,40(12):902-906.
[31] 古 彤, 白 锋, 刘震军,等. 高压直流输电体系对埋地金属管道腐蚀的影响参数[J]. 腐蚀与防护, 2019, 40(7):68-73.
GU T, BAI F, LIU Z J, et al. Influence parameters of HVDC system on buried metal pipeline corrosion[J]. Corrosion & Protection,2019, 40(7):68-73.
[32] 徐淑珍, 朱子述. 芦潮港-嵊泗直流工程预选极址的接地极计算和分析[J]. 上海交通大学学报, 1999, 33(12): 1 494-1 497.
XU S Z, ZHU Z S. Calculation and analysis of ground pole in preselected pole site of Luchao Port - Shengsi DC project[J]. Journal of Shanghai Jiaotong University, 1999, 33(12):1 494-1 497.
[33] 迟兴和, 张玉军. 直流接地极与大地中金属管道的防护距离[J]. 电网技术, 2008, 32(2):71-75.
CHI X H, ZHANG Y J. The protective distance between the DC grounding pole and the metal pipe in the earth[J]. Power Grid Technology, 2008, 32(2):71-75.
[34] 胡亚博, 吴志平, 吴世勤,等. 高压直流接地极对埋地管道腐蚀的影响和管控思考[J]. 油气储运, 2021, 40(3):256-261.
HU Y B, WU Z P, WU S Q,et al. Consideration on the influence of HVDC grounding pole on buried pipeline corrosion and its control[J]. Oil & Gas Storage and Transportation, 2021, 40(3):256-261.
[35] 付龙海.高压直流接地极对临近管道的电磁干扰及防护分析[J]. 电瓷避雷器, 2019, 2(1):89-94.
FU L H. Analysis of electromagnetic interference and protection of HVDC ground pole to adjacent pipeline[J]. Electric Porcelain Arrester, 2019, 2(1):89-94.
[36] 房媛媛, 卢 剑. 直流接地极的地电流对埋地金属管道腐蚀影响分析[J]. 南方电网技术, 2013, 7(6): 71-76.
FANG Y Y, LU J. Analysis on the Influence of HVDC Grounding Electrode’s Ground Current on the Corrosion of Buried Metal Pipelines[J]. Southern Power System Technology, 2013,7(6):71-76.
[37] 吕 超,张钰暄,李永发,等. 土壤环境对埋地金属管道所受高压直流干扰的影响[J].腐蚀与防护,2020,41(4):43-47.
LV C, ZHANG Y X, LI Y F,et al. Effect of Soil Environment on HVDC Interference to Buried Metal Pipeline[J]. Corrosion & Protection, 2020, 41(4):43-47.
[38] 董晓辉, 杨 威, 唐 程,等. 特高压直流入地电流对附近杆塔地网腐蚀评估[J]. 高电压技术, 2009, 35(7).343-327.
DONG X H, YNAG W, TANG C, et al. Evaluation on corrosion of nearby tower network by UHV direct current[J]. High Voltage Technique, 2009, 35(7): 343-327.
[39] 冯南战, 李志忠, 李亨特,等. 高压变电站接地网的腐蚀防护与监测技术研究进展[J]. 腐蚀科学与防护技术, 2018, 30(3):8-12.
FENG N Z, LI Z Z, LI H T, et al. Research progress of corrosion protection and monitoring technology for grounding networks in high voltage substations[J]. Corrosion Science and Protection Technology, 2018, 30(3):8-12.
[40] 王天正, 徐 霞, 郝晋堂,等. 高压变电站接地网的远程腐蚀监测技术[J]. 腐蚀科学与防护技术, 2016, 28(2):5-9.
WANG T Z, XU X,HAO J T, et al. Remote corrosion monitoring technology for grounding network of high voltage substation[J]. Corrosion Science and Protection Technology, 2016, 28(2):5-9.
[41] CSA Z662:19, Oil and pipeline systems[S].
[42] DL/T 437-2012,高压直流接地极技术导则[S].
DL/T 437-2012, Technical guidelines for high voltage DC grounding poles[S].
[43] DL/T 5224-2014, 高压直流输电大地返回系统设计技术规程[S].
DL/T 5224-2014, Technical specification for design of HVDC earth return system[S].
[44] 李 亚. 特高压直流输电接地极电流场分布特性研究[D]. 包头:内蒙古科技大学, 2019.
LI Y. Research on current distribution characteristics of ground electrode in UHVDC transmission[D]. Baotou: Inner Mongolia University of Science & Technology,2019.
[45] 曹国飞, 顾清林, 姜永涛,等. 高压直流接地极对埋地管道的电流干扰及人身安全距离[J]. 天然气工业, 2019, 39(3):125-132.
CAO G F, GU Q L, JIANG Y T, et al. Current Inference of HVDC ground electrode to buried Pipelines and its personal safety distance[J]. Natural Gas Industry, 2019, 39(3):125-132.
[46] 曹方圆, 白 锋. 直流接地极电流干扰下埋地金属管道防护距离影响因素研究[J]. 高压电器, 2019, 55(5):136-143.
CAO F Y,BAI F. Research on the factors influencing the protective distance of buried metal pipeline under the interference of DC earthed electrode current[J]. High-voltage Electrical Apparatus,2019, 55(5):136-143.
[47] GB 50991-2014,埋地钢制管道直流干扰防护技术标准[S].
GB 50991-2014, Technical standard for DC interference protection of buried steel pipelines[S].
[48] 赵雅蕾, 李自力, 房翔鹏,等. 高压直流接地极对埋地管道的干扰及防护研究[J]. 石油化工高等学校学报, 2017, 30(6):75-80.
ZHAO Y L, LI Z L, FANG X P, et al. Research on interference and protection of high voltage DC grounding pole to buried pipeline[J]. Journal of Petrochemical Universities, 2017, 30(6):75-80.
[49] 周 毅, 姜子涛, 马学民,等. 陆上油气管道受高压直流接地极干扰的腐蚀与防护实例分析[J]. 中国安全生产科学技术, 2019, 15(7):156-160.
ZHOU Y, JIANG Z T, MA X M, et al. Case study on corrosion and protection of onshore oil and gas pipeline subjected to high voltage DC grounding electrode interference[J]. China Safety Production Science and Technology, 2019, 15(7):156-160.