Today is Email Alert  RSS

Research Status and Prospect of Femtosecond Laser Shock Peening Technology

Expand
  • (Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering,Shandong University of Technology, Zibo 255000, China)

Received date: 2023-04-27

  Revised date: 2023-05-20

  Accepted date: 2023-06-15

  Online published: 2023-10-15

Abstract

As a micro-scale surface strengthening technique,femtosecond laser shock peening has the advantages of low thermal effect,shallow impact depth, high energy efficiency and process flexibility, which makes its great application advantages in surface modification of micro structures with complicated shapes, surface micro shaping of macro components and micro shock forming.Herein the development history of femtosecond laser shock peening technology was summarized, and the influence rules and mechanisms of impact mode, laser parameters,additional energy fields and other factors on the strengthening effect were summarized.Moreover, the potential applications and development trends of femtosecond laser shock peening technology were prospected, which could provide necessary guidance and support to break through the key issues of femtosecond laser shock peening and promote the industrial application of technology.

Cite this article

WANG Zongshen, ZANG Tong, CHEN Lei, KONG Meng, ZHENG Hongyu . Research Status and Prospect of Femtosecond Laser Shock Peening Technology[J]. Materials Protection, 2023 , 56(10) : 17 -24 . DOI: 10.16577/j.issn.1001-1560.2023.0232

References

[1] 赵绪杰,马永新,张增焕,等.激光冲击强化技术研究与应用现状[J].应用激光,2022, 42(10): 111-119.ZHAO X J, MA Y X, ZHANG Z H, et al.Research and Application Status of Laser Shock Peening Technology[J].Applied Laser, 2022, 42(10): 111-119.

[2] CHEN L, WANG Z S, GAO S, et al.Investigation on femtosecond laser shock peening of commercially pure copper without ablative layer and confinement layer in air[J].Optics and Laser Technology, 2022, 153: 108207.

[3] LI Y X,REN Z C,JIA X,et al.The effects of the confining medium and protective layer during femtosecond laser shock peening[J].Manufacturing Letters, 2021, 27: 26-30.

[4] LU C H, GE L C, ZHU B, et al.Effective femtosecond laser shock peening on a Mg-3Gd alloy at low pulse energy 430 μJ of 1 kHz[J].Journal of Magnesium and Alloys,2019, 7(3): 529-535.

[5] 田 甜, 张景泉, 黄 婷,等.吸收层对铜箔飞秒激光冲击强化的影响[J].表面技术, 2021, 50(12): 174-180.TIAN T, ZHANG J Q, HUANG T, et al.Effect of Absorption Layer on Femtosecond Laser Shock Peening of Copper Foil[J].Surface Technology, 2021, 50(12): 174-180.

[6] YOSHIDA M, NISHIBATA I, MATSUDA T, et al.Influence of pulse duration on mechanical properties and dislocation density of dry laser peened aluminum alloy using ultrashort pulsed laser-driven shock wave[J].Journal of Applied Physics, 2022, 132(7): 075101.

[7] SAGISAKA Y, YAMASHITA K, YANAGIHARA W, et al.Microparts processing using laser cutting and ultra-shortpulse laser peen forming[J].Journal of Materials Processing Technology.2015, 219: 230-236.

[8] SAGISAKA Y, KAMIYA M, MATSUDA M, et al.Thinsheet-metal bending by laser peen forming with femtosecond laser [J].Journal of Materials Processing Technology,2010, 210(15): 2 304-2 309.

[9] NAKANO H, MIYAUTI S, BUTANI N, et al.Femtosecond Laser Peening of Stainless Steel[J].Journal of Laser Micro/Nanoengineering, 2009, 4(1): 35-38.

[10] NAKANO H,TSUYAMA M,MIYAUTI S, et al.Femtosecond and Nanosecond Laser Peening of Stainless Steel[J].Journal of Laser Micro/Nanoengineering,2010,5(2):175-178.

[11] WU B X, TAO S, LEI S T.Numerical modeling of laser shock peening with femtosecond laser pulses and comparisons to experiments[J].Applied Surface Science, 2010,256(13): 4 376-4 382.

[12] MAJUMDAR J D, GUREVICH E L, KUMARI R, et al.Investigation on femto-second laser irradiation assisted shock peening of medium carbon (0.4%C) steel[J].Applied Surface Science, 2016, 364: 133-140.

[13] TRDAN U,SANO T,Klobcˇar D,et al.Improvement of corrosion resistance of AA2024 - T3 using femtosecond laser peening without protective and confining medium[J].Corrosion Science, 2018, 143: 46-55.

[14] KAWASHIMA T, SANO T, HIROSE A, et al.Femtosecond Laser Peening of Friction Stir Welded 7075-T73 Aluminum Alloys[J].Journal of Materials Processing Technology,2018, 262: 111-122.

[15] SANO T, EIMURA T, HIROSE A, et al.Improving Fatigue Performance of Laser -Welded 2024 -T3 Aluminum Alloy Using Dry Laser Peening[J].Metals (Basel), 2019, 9(11): 1192.

[16] LIAN Y L,HUA Y H,SUN J Y,et al.Martensitic transformation in temporally shaped femtosecond laser shock peening 304 steel[J].Applied Surface Science, 2021, 567:150855.

[17] WANG P J, CAO Q, LIU S, et al.Surface strengthening of stainless steels by nondestructive laser peening[J].Materials and Design, 2021, 205: 109754.

[18] YU Y Q, GONG J E, FANG X Y, et al.Comparison of surface integrity of GH4169 superalloy after high-energy, lowenergy, and femtosecond laser shock peening[J].Vacuum,2023, 208: 111740.

[19] GUO W, WANG H, HE G Z, et al.Comparison of mechanical and corrosion properties of 7050 aluminum alloy after different laser shock peening[J].Optics and Laser Technology, 2022, 151: 108061.

[20] SHEPELEV V V, PETROV Y V, INOGAMOV N A, et al.Attenuation and inflection of initially planar shock wave generated by femtosecond laser pulse[J].Optics and Laser Technology, 2022, 152: 108100.

[21] JALIL S A, YANG J, ELKABBASH M, et al.Maskless formation of uniform subwavelength periodic surface structures by double temporally-delayed femtosecond laser beams[J].Applied Surface Science, 2019, 471: 516-520.

[22] SUN R J, HE G Z, BAI H L, et al.Laser Shock Peening of Ti6Al4V Alloy with Combined Nanosecond and Femtosecond Laser Pulses[J].Metals (Basel), 2021, 12(1): 26.

[23] MAHARJAN N, LIN Z, ARDI D T, et al.Laser peening of 420 martensitic stainless steel using ultrashort laser pulses[J].Procedia CIRP, 2020, 87: 279-284.

[24] WANG H, JÜRGENSEN J, DECKER P, et al.Corrosion behavior of NiTi alloy subjected to femtosecond laser shock peening without protective coating in air environment[J].Applied Surface Science, 2020, 501: 144338.

[25] WANG H,KALCHEV Y,WANG H C,et al.Surface modification of NiTi alloy by ultrashort pulsed laser shock peening[J].Surface and Coatings Technology, 2020, 394:125899.

[26] WANG H, GUREVICH E L, OSTENDORF A.Femtosecond laser shock peening on the surface of NiTi shape memory alloy[J].Procedia CIRP, 2020, 94: 910-913.

[27] LEE D, KANNATEY-ASIBU E.Experimental investigation of laser shock peening using femtosecond laser pulses[J].Journal of Laser Applications, 2011, 23(2): 22004.

[28] AGEEV E I, ANDREEVA Y M, IONIN A A, et al.Singleshot femtosecond laser processing of Al-alloy surface: An interplay between Mbar shock waves, enhanced microhardness, residual stresses, and chemical modification[J].Optics and Laser Technology, 2020, 126: 106131.

[29] WANG H, Pöhl F, YAN K, et al.Effects of femtosecond laser shock peening in distilled water on the surface characterizations of NiTi shape memory alloy[J].Applied Surface Science, 2019, 471: 869-877.

[30] HOPPIUS J S, KUKREJA L M, KNYAZEVA M, et al.On femtosecond laser shock peening of stainless steel AISI 316[J].Applied Surface Science, 2018, 435: 1 120-1 124.

[31] ELANGO K, HOPPIUS J S, KUKREJA L M, et al.Studies on ultra-short pulsed laser shock peening of stainless-steel in different confinement media[J].Surface and Coatings Technology, 2020, 397: 125988.

[32] KUKREJA L M,HOPPIUS J S,ELANGO K,et al.Optimization of processing parameters of ultrashort (100 fs-2 ps)pulsed laser shock peening of stainless steel[J].Journal of Laser Applications, 2021, 33(4): 042048.

[33] SANO T, EIMURA T, KASHIWABARA R, et al.Femtosecond laser peening of 2024 aluminum alloy without a sacrificial overlay under atmospheric conditions[J].Journal of Laser Applications, 2017, 29(1): 12005.

[34] WANG W B, HUNG C Y, HOWE L, et al.Enabling High-Performance Surfaces of Biodegradable Magnesium Alloys via Femtosecond Laser Shock Peening with Ultralow Pulse Energy[J].ACS Applied Bio Materials,2021,4(11):7 903-7 912.

[35] XIAO K H, LI M G, LI M R, et al.Femtosecond laser ablation of AZ31 magnesium alloy under high repetition frequencies [J].Applied Surface Science, 2022, 594:153406.

[36] ZHANG C Y, DONG Y L, YE C.Recent Developments and Novel Applications of Laser Shock Peening: A Review[J].Advanced Engineering Materials, 2021, 23(7): 2001216.

[37] CHANG Y, LIAO Y, CHENG G J.Warm Laser Shock Peening Driven Nanostructures and Their Effects on Fatigue Performance in Aluminum Alloy 6160[J].Advanced Engineering Materials, 2010, 12(4): 291-297.

[38] LI J, ZHOU J Z, LIU L, et al.High-cycle bending fatigue behavior of TC6 titanium alloy subjected to laser shock peening assisted by cryogenic temperature[J].Surface and Coatings Technology, 2021, 409: 126848.

[39] ZHANG H, REN Z C, LIU J, et al.Microstructure evolution and electroplasticity in Ti64 subjected to electropulsingassisted laser shock peening[J].Journal of Alloys and Compounds, 2019, 802: 573-582.

[40] MENG X Q, LENG X M, SHAN C, et al.Vibration fatigue performance improvement in 2024-T351 aluminum alloy by ultrasonic- assisted laser shock peening[J].International Journal of Fatigue, 2023, 168: 107471.

[41] HE G Z,QIAN C K,CAI Z P,et al.Magnetic Field-Assisted Laser Shock Peening of Ti6Al4V Alloy[J].Advanced Engineering Materials, 2023: 2201843.

[42] YE Y X, FENG Y Y, HUA X J, et al.Experimental research on laser shock forming metal foils with femtosecond laser[J].Applied Surface Science, 2013, 285: 600-606.

[43] YE Y X, FENG Y Y, LIAN Z C, et al.Plastic deformation mechanism of polycrystalline copper foil shocked with femtosecond laser[J].Applied Surface Science,2014,309:240-249.

[44] YE Y X, FENG Y Y, LIAN Z C, et al.Mold-free fs laser shock micro forming and its plastic deformation mechanism[J].Optics and Lasers in Engineering, 2015, 67: 74-82.

[45] 姚红兵, 于文龙, 杨 昭,等.飞秒激光冲击AZ31B 镁合金过程的数值模拟[J].光子学报, 2015, 44(4):41-46.YAO H B, YU W L, YANG Z, et al.Numerical Simulation of AZ31B Magnesium Alloy Shocked with Femtosecond Laser[J].Acta Photonica Sinica,2015, 44(4): 41-46.

[46] ZANG T,WANG Z S,CHEN L,et al.Influence of pulse energy on surface integrity of AZ31 magnesium alloy processed by femtosecond laser shock peening[J].Journal of Materials Research and Technology, 2023, 25: 4 425-4 440.

[47] LLOYD H, JON R R, ALEXANDER R, et al.Laser Peening: A Tool for Additive Manufacturing Post-Processing[J].Additive Manufacturing, 2018, 24: 67-75.

[48] SHIYAS K A, RAMANUJAM R.A review on post processing techniques of additively manufactured metal parts for improving the material properties[J].Materials Today: Proceedings.2021, 46: 1 429-1 436.

[49] 于 江,丁红瑜,耿遥祥,等.选区激光熔化金属零件后处理技术研究进展[J].材料导报, 2022, 36(增刊1):392-400.YU J, DING H Y, GENG Y X, et al.Research Progress on Post-Processing of Metal Parts by Selective Laser Melting[J].Materials Reports, 2022, 36(S1): 392-400.

[50] MA L, LI W Q, YANG Y Z, et al.Corrosion Behavior of NiTi Alloys Fabricate by Selective Laser Melting Subjected to Femtosecond Laser Shock Peening[J].Coatings (Basel), 2021, 11(9): 1 078.

[51] BIDDLECOM J, LI Y, ZHAO X, et al.Femtosecond Laser Shock Peening Residual Stress and Fatigue Life of Additive Manufactured AlSi10Mg [J].JOM, 2023, 75 ( 6):1 964-1 974.

Outlines

/