Research Status and Prospect of Femtosecond Laser Shock Peening Technology
Received date: 2023-04-27
Revised date: 2023-05-20
Accepted date: 2023-06-15
Online published: 2023-10-15
Key words: laser shock peening; femtosecond laser; surface modification; micro-scale
WANG Zongshen, ZANG Tong, CHEN Lei, KONG Meng, ZHENG Hongyu . Research Status and Prospect of Femtosecond Laser Shock Peening Technology[J]. Materials Protection, 2023 , 56(10) : 17 -24 . DOI: 10.16577/j.issn.1001-1560.2023.0232
[1] 赵绪杰,马永新,张增焕,等.激光冲击强化技术研究与应用现状[J].应用激光,2022, 42(10): 111-119.ZHAO X J, MA Y X, ZHANG Z H, et al.Research and Application Status of Laser Shock Peening Technology[J].Applied Laser, 2022, 42(10): 111-119.
[2] CHEN L, WANG Z S, GAO S, et al.Investigation on femtosecond laser shock peening of commercially pure copper without ablative layer and confinement layer in air[J].Optics and Laser Technology, 2022, 153: 108207.
[3] LI Y X,REN Z C,JIA X,et al.The effects of the confining medium and protective layer during femtosecond laser shock peening[J].Manufacturing Letters, 2021, 27: 26-30.
[4] LU C H, GE L C, ZHU B, et al.Effective femtosecond laser shock peening on a Mg-3Gd alloy at low pulse energy 430 μJ of 1 kHz[J].Journal of Magnesium and Alloys,2019, 7(3): 529-535.
[5] 田 甜, 张景泉, 黄 婷,等.吸收层对铜箔飞秒激光冲击强化的影响[J].表面技术, 2021, 50(12): 174-180.TIAN T, ZHANG J Q, HUANG T, et al.Effect of Absorption Layer on Femtosecond Laser Shock Peening of Copper Foil[J].Surface Technology, 2021, 50(12): 174-180.
[6] YOSHIDA M, NISHIBATA I, MATSUDA T, et al.Influence of pulse duration on mechanical properties and dislocation density of dry laser peened aluminum alloy using ultrashort pulsed laser-driven shock wave[J].Journal of Applied Physics, 2022, 132(7): 075101.
[7] SAGISAKA Y, YAMASHITA K, YANAGIHARA W, et al.Microparts processing using laser cutting and ultra-shortpulse laser peen forming[J].Journal of Materials Processing Technology.2015, 219: 230-236.
[8] SAGISAKA Y, KAMIYA M, MATSUDA M, et al.Thinsheet-metal bending by laser peen forming with femtosecond laser [J].Journal of Materials Processing Technology,2010, 210(15): 2 304-2 309.
[9] NAKANO H, MIYAUTI S, BUTANI N, et al.Femtosecond Laser Peening of Stainless Steel[J].Journal of Laser Micro/Nanoengineering, 2009, 4(1): 35-38.
[10] NAKANO H,TSUYAMA M,MIYAUTI S, et al.Femtosecond and Nanosecond Laser Peening of Stainless Steel[J].Journal of Laser Micro/Nanoengineering,2010,5(2):175-178.
[11] WU B X, TAO S, LEI S T.Numerical modeling of laser shock peening with femtosecond laser pulses and comparisons to experiments[J].Applied Surface Science, 2010,256(13): 4 376-4 382.
[12] MAJUMDAR J D, GUREVICH E L, KUMARI R, et al.Investigation on femto-second laser irradiation assisted shock peening of medium carbon (0.4%C) steel[J].Applied Surface Science, 2016, 364: 133-140.
[13] TRDAN U,SANO T,Klobcˇar D,et al.Improvement of corrosion resistance of AA2024 - T3 using femtosecond laser peening without protective and confining medium[J].Corrosion Science, 2018, 143: 46-55.
[14] KAWASHIMA T, SANO T, HIROSE A, et al.Femtosecond Laser Peening of Friction Stir Welded 7075-T73 Aluminum Alloys[J].Journal of Materials Processing Technology,2018, 262: 111-122.
[15] SANO T, EIMURA T, HIROSE A, et al.Improving Fatigue Performance of Laser -Welded 2024 -T3 Aluminum Alloy Using Dry Laser Peening[J].Metals (Basel), 2019, 9(11): 1192.
[16] LIAN Y L,HUA Y H,SUN J Y,et al.Martensitic transformation in temporally shaped femtosecond laser shock peening 304 steel[J].Applied Surface Science, 2021, 567:150855.
[17] WANG P J, CAO Q, LIU S, et al.Surface strengthening of stainless steels by nondestructive laser peening[J].Materials and Design, 2021, 205: 109754.
[18] YU Y Q, GONG J E, FANG X Y, et al.Comparison of surface integrity of GH4169 superalloy after high-energy, lowenergy, and femtosecond laser shock peening[J].Vacuum,2023, 208: 111740.
[19] GUO W, WANG H, HE G Z, et al.Comparison of mechanical and corrosion properties of 7050 aluminum alloy after different laser shock peening[J].Optics and Laser Technology, 2022, 151: 108061.
[20] SHEPELEV V V, PETROV Y V, INOGAMOV N A, et al.Attenuation and inflection of initially planar shock wave generated by femtosecond laser pulse[J].Optics and Laser Technology, 2022, 152: 108100.
[21] JALIL S A, YANG J, ELKABBASH M, et al.Maskless formation of uniform subwavelength periodic surface structures by double temporally-delayed femtosecond laser beams[J].Applied Surface Science, 2019, 471: 516-520.
[22] SUN R J, HE G Z, BAI H L, et al.Laser Shock Peening of Ti6Al4V Alloy with Combined Nanosecond and Femtosecond Laser Pulses[J].Metals (Basel), 2021, 12(1): 26.
[23] MAHARJAN N, LIN Z, ARDI D T, et al.Laser peening of 420 martensitic stainless steel using ultrashort laser pulses[J].Procedia CIRP, 2020, 87: 279-284.
[24] WANG H, JÜRGENSEN J, DECKER P, et al.Corrosion behavior of NiTi alloy subjected to femtosecond laser shock peening without protective coating in air environment[J].Applied Surface Science, 2020, 501: 144338.
[25] WANG H,KALCHEV Y,WANG H C,et al.Surface modification of NiTi alloy by ultrashort pulsed laser shock peening[J].Surface and Coatings Technology, 2020, 394:125899.
[26] WANG H, GUREVICH E L, OSTENDORF A.Femtosecond laser shock peening on the surface of NiTi shape memory alloy[J].Procedia CIRP, 2020, 94: 910-913.
[27] LEE D, KANNATEY-ASIBU E.Experimental investigation of laser shock peening using femtosecond laser pulses[J].Journal of Laser Applications, 2011, 23(2): 22004.
[28] AGEEV E I, ANDREEVA Y M, IONIN A A, et al.Singleshot femtosecond laser processing of Al-alloy surface: An interplay between Mbar shock waves, enhanced microhardness, residual stresses, and chemical modification[J].Optics and Laser Technology, 2020, 126: 106131.
[29] WANG H, Pöhl F, YAN K, et al.Effects of femtosecond laser shock peening in distilled water on the surface characterizations of NiTi shape memory alloy[J].Applied Surface Science, 2019, 471: 869-877.
[30] HOPPIUS J S, KUKREJA L M, KNYAZEVA M, et al.On femtosecond laser shock peening of stainless steel AISI 316[J].Applied Surface Science, 2018, 435: 1 120-1 124.
[31] ELANGO K, HOPPIUS J S, KUKREJA L M, et al.Studies on ultra-short pulsed laser shock peening of stainless-steel in different confinement media[J].Surface and Coatings Technology, 2020, 397: 125988.
[32] KUKREJA L M,HOPPIUS J S,ELANGO K,et al.Optimization of processing parameters of ultrashort (100 fs-2 ps)pulsed laser shock peening of stainless steel[J].Journal of Laser Applications, 2021, 33(4): 042048.
[33] SANO T, EIMURA T, KASHIWABARA R, et al.Femtosecond laser peening of 2024 aluminum alloy without a sacrificial overlay under atmospheric conditions[J].Journal of Laser Applications, 2017, 29(1): 12005.
[34] WANG W B, HUNG C Y, HOWE L, et al.Enabling High-Performance Surfaces of Biodegradable Magnesium Alloys via Femtosecond Laser Shock Peening with Ultralow Pulse Energy[J].ACS Applied Bio Materials,2021,4(11):7 903-7 912.
[35] XIAO K H, LI M G, LI M R, et al.Femtosecond laser ablation of AZ31 magnesium alloy under high repetition frequencies [J].Applied Surface Science, 2022, 594:153406.
[36] ZHANG C Y, DONG Y L, YE C.Recent Developments and Novel Applications of Laser Shock Peening: A Review[J].Advanced Engineering Materials, 2021, 23(7): 2001216.
[37] CHANG Y, LIAO Y, CHENG G J.Warm Laser Shock Peening Driven Nanostructures and Their Effects on Fatigue Performance in Aluminum Alloy 6160[J].Advanced Engineering Materials, 2010, 12(4): 291-297.
[38] LI J, ZHOU J Z, LIU L, et al.High-cycle bending fatigue behavior of TC6 titanium alloy subjected to laser shock peening assisted by cryogenic temperature[J].Surface and Coatings Technology, 2021, 409: 126848.
[39] ZHANG H, REN Z C, LIU J, et al.Microstructure evolution and electroplasticity in Ti64 subjected to electropulsingassisted laser shock peening[J].Journal of Alloys and Compounds, 2019, 802: 573-582.
[40] MENG X Q, LENG X M, SHAN C, et al.Vibration fatigue performance improvement in 2024-T351 aluminum alloy by ultrasonic- assisted laser shock peening[J].International Journal of Fatigue, 2023, 168: 107471.
[41] HE G Z,QIAN C K,CAI Z P,et al.Magnetic Field-Assisted Laser Shock Peening of Ti6Al4V Alloy[J].Advanced Engineering Materials, 2023: 2201843.
[42] YE Y X, FENG Y Y, HUA X J, et al.Experimental research on laser shock forming metal foils with femtosecond laser[J].Applied Surface Science, 2013, 285: 600-606.
[43] YE Y X, FENG Y Y, LIAN Z C, et al.Plastic deformation mechanism of polycrystalline copper foil shocked with femtosecond laser[J].Applied Surface Science,2014,309:240-249.
[44] YE Y X, FENG Y Y, LIAN Z C, et al.Mold-free fs laser shock micro forming and its plastic deformation mechanism[J].Optics and Lasers in Engineering, 2015, 67: 74-82.
[45] 姚红兵, 于文龙, 杨 昭,等.飞秒激光冲击AZ31B 镁合金过程的数值模拟[J].光子学报, 2015, 44(4):41-46.YAO H B, YU W L, YANG Z, et al.Numerical Simulation of AZ31B Magnesium Alloy Shocked with Femtosecond Laser[J].Acta Photonica Sinica,2015, 44(4): 41-46.
[46] ZANG T,WANG Z S,CHEN L,et al.Influence of pulse energy on surface integrity of AZ31 magnesium alloy processed by femtosecond laser shock peening[J].Journal of Materials Research and Technology, 2023, 25: 4 425-4 440.
[47] LLOYD H, JON R R, ALEXANDER R, et al.Laser Peening: A Tool for Additive Manufacturing Post-Processing[J].Additive Manufacturing, 2018, 24: 67-75.
[48] SHIYAS K A, RAMANUJAM R.A review on post processing techniques of additively manufactured metal parts for improving the material properties[J].Materials Today: Proceedings.2021, 46: 1 429-1 436.
[49] 于 江,丁红瑜,耿遥祥,等.选区激光熔化金属零件后处理技术研究进展[J].材料导报, 2022, 36(增刊1):392-400.YU J, DING H Y, GENG Y X, et al.Research Progress on Post-Processing of Metal Parts by Selective Laser Melting[J].Materials Reports, 2022, 36(S1): 392-400.
[50] MA L, LI W Q, YANG Y Z, et al.Corrosion Behavior of NiTi Alloys Fabricate by Selective Laser Melting Subjected to Femtosecond Laser Shock Peening[J].Coatings (Basel), 2021, 11(9): 1 078.
[51] BIDDLECOM J, LI Y, ZHAO X, et al.Femtosecond Laser Shock Peening Residual Stress and Fatigue Life of Additive Manufactured AlSi10Mg [J].JOM, 2023, 75 ( 6):1 964-1 974.
/
〈 |
|
〉 |