Today is Email Alert  RSS

Review of Research on Bionic Coatings Prepared by High-Energy Beams Cladding

Expand
  • (1.Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China;2.Shanghai Songjiang Landscaping & City Appearance Administrative Bureau, Shanghai 201699, China;3.School of Materials, Shanghai DianJi University, Shanghai 201306, China;4.Shanghai Nanotechnology Promotion Center, Shanghai 200237, China)

Received date: 2023-06-13

  Revised date: 2023-07-15

  Accepted date: 2023-08-14

  Online published: 2023-10-15

Abstract

Bionic coatings with excellent properties such as wear resistance and corrosion resistance can be used in harsh environments such as marine, petroleum, and chemical industries.Hence, it is of great significance for the preparation of advanced bionic coatings to study the bionic structure of natural biological materials, preparation methods and quality control methods of bionic coatings.In this work, the research statuses of bionic coatings prepared by high-energy beam cladding technology were introduced from two aspects: the preparation of bionic coatings and the quality control of bionic coatings by high-energy beam cladding technology.In terms of preparing bionic coatings by high-energy beam cladding technology, according to the classification of different bionic mechanisms, the strengthening mechanism of bionic coatings and the research status of coatings using high-energy beam preparation methods were reviewed.In terms of quality control of bionic coatings, the role of process optimization and numerical simulation in the preparation process in regulating the performance of bionic coatings prepared by high-energy beam cladding technology was explained.Finally, the shortcomings in the current research were summarized, which could provide reference directions and prospects for subsequent researches.

Cite this article

SUN Boyang, LIU Minghui, ZHANG Shitao, PAN Zhengyang, JIANG Chunxia, LI Wenge, LIU Yanbo, ZHAO Yuantao . Review of Research on Bionic Coatings Prepared by High-Energy Beams Cladding[J]. Materials Protection, 2023 , 56(10) : 56 -66 . DOI: 10.16577/j.issn.1001-1560.2023.0235

References

[1] WANG Y W, HUANG Y M, YANG L J, et al.Microstructure and property of tungsten carbide particulate reinforced wear resistant coating by TIG cladding[J].International Journal of Refractory Metals and Hard Materials, 2021,100: 105598.

[2] GANVIR A, JAHAGIRDAR A R, MULONE A, et al.Novel utilization of liquid feedstock in high velocity air fuel(HVAF) spraying to deposit solid lubricant reinforced wear resistant coatings[J].Journal of Materials Processing Technology, 2021, 295: 117203.

[3] 楚景慧.镁合金表面石墨烯基涂层的仿生构筑及防护机制研究[D].长春:吉林大学, 2021.CHU J H.Study on Biomimetic Construction and Protection Mechanism of Graphene-Based Coating on Magnesium Alloy[D].Changchun:Jilin University,2021.

[4] ZHU Y, LIU X B, LIU Y F, et al.Development and characterization of Co-Cu/Ti3SiC2 self-lubricating wear resistant composite coatings on Ti6Al4V alloy by laser cladding[J].Surface and Coatings Technology, 2021, 424: 127664.

[5] MAHADE S, Björklund S, GOVINDARAJAN S, et al.Novel wear resistant carbide-laden coatings deposited by powder-suspension hybrid plasma spray: Characterization and testing[J].Surface and Coatings Technology, 2020, 399:126147.

[6] WANG J,ZHANG Y,CUI Y,et al.Numerical investigation of residual stress in plasma sprayed antifriction wear-resistant sealing coatings on GH4169 superalloy substrate[J].Materials Today Communications, 2022, 31: 103595.

[7] 田菁艾.风沙两相流条件下凸条形态混凝土壁面冲蚀磨损机理研究[D].芜湖:安徽工程大学, 2022.TIAN J A.Study on the Erosion-Wear Mechanisms of the Concrete Surfaces with Convex Bars under the Wind-Sand Two-Phase Flow[D].Wuhu: Anhui Polytechnic University,2022.

[8] ARIF Z U, KHALID M Y, UR REHMANE E, et al.A review on laser cladding of high-entropy alloys, their recent trends and potential applications[J].Journal of Manufacturing Processes, 2021, 68: 225-273.

[9] DAS A K.Recent trends in laser cladding and alloying on magnesium alloys: A review[J].Materials Today: Proceedings, 2022, 51: 723-727.

[10] ZHANG Q, WANG Q, HAN B, et al.Comparative studies on microstructure and properties of CoCrFeMnNi high entropy alloy coatings fabricated by high-speed laser cladding and normal laser cladding [J].Journal of Alloys and Compounds, 2023, 947: 169517.

[11] ZHU L D, XUE P S, LAN Q, et al.Recent research and development status of laser cladding: A review [J].Optics & Laser Technology, 2021, 138: 106915.

[12] DAS A K.Effect of rare earth oxide additive in coating deposited by laser cladding: A review[J].Materials Today:Proceedings, 2022, 52: 1 558-1 564.

[13] XU Z Y, YUAN J F, WU M Y, et al.Effect of laser cladding parameters on Inconel 718 coating performance and multi-parameter optimization[J].Optics & Laser Technology, 2023, 158: 108850.

[14] 崔 陈, 朱协彬, 程敬卿,等.等离子熔覆Fe 基/WC-10Co-4Cr 涂层的组织与性能研究[J].表面技术,2022,52(7):1-15.CUI C,ZHU X B,CHEN J Q,et al.Microstructure and properties of Fe-based /WC-10Co-4Cr coatings by plasma Cladding[J].Surface Technology, 2022,52(7):1-15.

[15] 刘治宇, 王振宇, 刘政军,等.等离子弧堆焊WC 增强镍基堆焊层的组织及耐磨性研究[J].热加工工艺, 2023,51(17): 27-31.LIU Z Y,WANG Z Y,LIU Z J,et al.Microstructure and Wear Resistance of Plasma Arc Surfacing WC Reinforced Nickel-Based Surfacing Layer[J].Hot Working Technology,2023,51 (17): 27-31.

[16] XIE F W, HE Y H, YUAN Z R, et al.Microstructure and high-temperature sliding wear performance of Fe-Co-Mo alloy coating fabricated by plasma cladding[J].Surface and Coatings Technology, 2022, 444: 128667.

[17] 柴廷玺, 徐宏彤, 晏丽琴,等.等离子熔覆制备高熵合金涂层耐腐蚀性能的研究进展[J].材料热处理学报,2022, 43(3): 11-20.CHAI T X,XU H T,YAN L Q, Advances in corrosion resistance of high-entrophy alloys coatings prepared by plasma cladding[J].Transactions of Materials and Heat Treatment,2022,43(3):11-20.

[18] AMY W, INL J, WOO R C, et al.Bioinspired nacre-like alumina with a bulk-metallic glass-forming alloy as a compliant phase[J].Nature Communications, 2019, 10(1):961.

[19] ASKARINEJAD S, CHOSHALI H A, FLAVIN C, et al.Effects of tablet waviness on the mechanical response of architected multilayered materials: modeling and experiment[J].Composite Structures, 2018, 195: 118-125.

[20] 冯伟龙.H13 钢仿生强化层激光熔覆制备工艺研究[D].锦州:辽宁工业大学, 2020.FENG W L.Study on Laser Cladding Preparation Process of H13 Steel Bionic Strengthening Layer[D].Jinzhou: Liaoning University of Technology,2020.

[21] 李高松.镍基合金功能表面耦合仿生激光熔覆工艺及其性能研究[D].锦州:辽宁工业大学, 2019.LI G S.Study on Functional Surface Coupling Bionic Laser Cladding Process and Properties of Nickel - Based Alloys[D].Jinzhou: Liaoning University of Technology,2019.

[22] CHEN Z K, LU S C, SONG X B, et al.Effects of bionic units on the fatigue wear of gray cast iron surface with different shapes and distributions[J].Optics & Laser Technology, 2015, 66: 166-174.

[23] NALEWAY S E, PORTER M M, MCKITTRICK J, et al.Structural Design Elements in Biological Materials: Application to Bioinspiration[J].Advanced Materials, 2015, 27(37): 5 455-5 476.

[24] XIAO Y M, YANG Y Q, WANG D, et al.In-situ synthesis of high strength and toughness TiN/Ti6Al4V sandwich composites by laser powder bed fusion under a nitrogen-containing atmosphere [J].Composites Part B: Engineering,2023, 253: 110534.

[25] 王鹏翔.高强钢-高氮钢仿生叠合交织结构等离子弧增材工艺与性能研究[D].南京:南京理工大学, 2021.WANG P X.Investigation on plasma arc additive technology and performance of high strength steel and high nitrogen steel bionic laminated interwoven structure[D].Nanjing:Nanjing University of Science & Technology, 2021.

[26] HUANG S M, SUN D Q, XU D S, et al.Microstructures and Properties of NiCrBSi/WC Biomimetic Coatings Prepared by Plasma Spray Welding[J].Journal of Bionic Engineering, 2015, 12(4): 592-603.

[27] 崔有正.球头铣削仿生表面磨损与抗疲劳性能研究[D].哈尔滨:哈尔滨理工大学, 2021.CUI Y Z.Research on Bionic Surface Wear and Fatigue Resistance of Ball End Milling[D].Harbin: Harbin University of Science and Technology,2021.

[28] 张志鑫.CeO2/石墨/CoCrFe 等离子熔覆层制备及其微织构化表面摩擦学性能[D].哈尔滨:哈尔滨工程大学,2021.ZHANG Z X.Preparation of Plasma Cladded CeO2/Graphite/CoCrFe Coatings and Tribological Property of Micro-textured Surface[D].Harbin: Harbin Engineering University,2021.

[29] ZHAN X H, YI P, LIU Y C, et al.Effects of texture spacing and bulges of bionic sinusoidal texture on the adhesion properties and fracture mechanism of plasma-sprayed coatings[J].Surface and Coatings Technology, 2020, 393:125772.

[30] YAO F, FANG L, LI G S.Study on structure and process performance of laser cladding nickel - based coating[J].Journal of Materials Research and Technology, 2021, 13:138-143.

[31] ZHOU H, ZHANG P, SUN N, et al.Wear properties of compact graphite cast iron with bionic units processed by deep laser cladding WC [J].Applied Surface Science,2010, 256(21): 6 413-6 419.

[32] 陈宏志.铜基仿生增摩耐磨表面制备工艺研究[D].青岛:山东科技大学, 2020.CHEN H Z.Study on the Manufacturing Technology of Copper-based Bionic Anti-friction and Wear-resistant Surface[D].Qingdao: Shandong University of Science and Technology, 2020.

[33] WU M Y, ZHAN X H, BU H C, et al.Wear Resistance of Different Bionic Structure Manufactured by Laser Cladding on Ti6Al4V[J].Metals and Materials International, 2021,27: 2 319- 2 327.

[34] 周鸿凯, 皮智敏, 黄志武,等.多尺度WC-Co 金属陶瓷涂层的研究现状[J].热加工工艺,2021,50(6):18-21.ZHOU H K, PI Z M, HUANG Z W, et al.Research Status of Multi-Modal WC-Co Cermet Coatings[J].Hot Working Technology,2021,50(6):18-21.

[35] MA G L, CUI H Z, JIANG D, et al.The evolution of multi and hierarchical carbides and their collaborative wear-resisting effects in CoCrNi/WC composite coatings via laser cladding[J].Materials Today Communications, 2022, 30:103223.

[36] 鲁亚冉.激光熔注多尺度颗粒增强铁基复合材料层耐磨性能研究[D].武汉:华中科技大学, 2019.LU Y R.Study on Wear Resistance of Multi-Scale Particle Reinforced Iron Matrix Composite Layer by Laser Melt Injection[D].Wuhan: Huazhong University of Science & Technology,2019.

[37] 王 熙.合金钢表面仿生梯度陶瓷防护涂层的制备与性能研究[D].长春:吉林大学, 2020.WANG X.Preparation and Properties of Bionic Gradient Ceramic Protective Coating on Alloy Steel Surface[D].Changchun:Jilin University,2020.

[38] JIANG P F, NIE M H, ZONG X M, et al.Microstructure and mechanical properties of TC4/NiTi bionic gradient heterogeneous alloy prepared by multi-wire arc additive manufacturing[J].Materials Science and Engineering: A, 2023,866: 144678.

[39] 沈大臣.Cr12MoV 钢表面激光熔覆Ni/Ni-WC 梯度涂层组织及性能研究[D].重庆:重庆理工大学, 2020.SHEN D C.Microstructure and Properties of Laser Cladding Ni/Ni-WC Gradient Coating on Cr12MoV Steel Surface[D].Chongqing:Chongqing University of Technology,2020.

[40] KUMAR S, MANDAL A, DAS A K.The effect of process parameters and characterization for the laser cladding of cBN based composite clad over the Ti6Al4V alloy[J].Materials Chemistry and Physics, 2022, 288: 126410.

[41] SHI B W, LI T, GUO Z W, et al.Selecting process parameters of crack-free Ni60A alloy coating prepared by coaxial laser cladding[J].Optics & Laser Technology, 2022, 149:107805.

[42] 安学甲.原位生成WC 增强镍基涂层激光熔覆工艺及其数据库研究[D].锦州:辽宁工业大学, 2021.AN X J.Study on Laser Cladding Process of In-Situ WC Reinforced Nickel - Based Coating and Its Database [D].Jinzhou: Liaoning University of Technology,2021.

[43] DENG Z X, LIU D F, LIU G, et al.Numerical simulation study on the formation mechanism of hydroxyapatite-silver gradient bioactive ceramic coatings under wide-band laser cladding[J].Optics & Laser Technology, 2023, 163:109412.

[44] WANG C Y,ZHOU J Z,ZHANG T,et al.Numerical simulation and solidification characteristics for laser cladding of Inconel 718[J].Optics & Laser Technology, 2022, 149:107843.

[45] TAMANNAN, CROUCH R, NAHER S.Progress in numerical simulation of the laser cladding process[J].Optics and Lasers in Engineering, 2019, 122: 151-163.

[46] 吴 涛.基于铁基复合材料激光熔覆多物理场耦合数值仿真[D].南昌:华东交通大学, 2020.WU T.Multi-physics Coupled Numerical Simulation of Lasercladding Based on Iron - based Composites[D].Nanchang: East China Jiaotong University,2020.

[47] HAN X, LI C, CHEN X X, et al.Numerical simulation and experimental study on the composite process of submerged arc cladding and laser cladding[J].Surface and Coatings Technology, 2022, 439: 128432.

[48] 胡肇炜, 李文戈, 吴钱林.激光熔覆原位合成Mo2NiB2的热力学分析及数值模拟[J].材料热处理学报, 2017, 38(5): 166-171.HU Z W,LI W G,WU Q L.Thermodynamic analysis and numerical simulation of Mo2NiB2 prepared in-situ by laser cladding[J].Transactions of Materials and Heat Treatment,2017, 38(5): 166-171.

[49] YI P, ZHAN X H, HE Q K, et al.Influence of laser parameters on graphite morphology in the bonding zone and process optimization in gray cast iron laser cladding[J].Optics & Laser Technology, 2019, 109: 480-487.

[50] 尹相恺.高锰钢基体等离子熔覆工艺优化数值模拟研究[D].青岛:青岛理工大学, 2021.YIN X K.Numerical simulation of Plasma Cladding Process Optimization on High ManganeseSteel substrate[D].Qingdao:Qingdao University of Technology,2021.

[51] ZHAO G P, YUAN Y H, WANG H W, et al.Study on wear properties of 7075 aluminum alloy by laser alloying imitating shell surface structure with different unit spacing[J].Materials Chemistry and Physics, 2023, 297: 127327.

[52] 刘佳明.植物叶片抗疲劳耦元提取与仿生结构设计研究[D].南昌:南昌大学, 2020.LIU J M.Research on Extracting Anti-fatigue Coupling Element and Designing Bionic Structure[D].Nanchang:Nanchang University,2020.

[53] RIQUELME A, RODRIGO P, Escalera-Rodríguez M D,et al.Analysis and optimization of process parameters in Al-SiCp laser cladding[J].Optics and Lasers in Engineering, 2016, 78: 165-173.

[54] 肖 强, 徐 睿.超快激光制备材料表面微纳结构的研究进展[J].中国表面工程, 2020, 33(1): 1-17.XIAO Q,XU R.Research Progress in Surface Micro-Nano Structure of Materials Prepared by Ultrafast Laser[J].China Surface Engineering, 2020, 33(1): 1-17.

[55] 张家俊.人工骨表面微纳结构设计制造及服役性能研究[D].镇江:江苏科技大学, 2021.ZHANG J J.Research on the Design, Manufacture and Service Performance of the Surface Microstructure of Artificial Bone[D].Zhenjiang: Jiangsu University of Science and Technology,2021.

Outlines

/