Study on the Deposition Behavior of 690TT Alloy Corrosion Products in the Simulated Oxidation Operation Stage of PWR
Received date: 2023-03-24
Revised date: 2023-04-12
Accepted date: 2023-05-06
Online published: 2023-10-15
Key words: alloy 690TT; oxidation operation; corrosion products; deposition
SUN Yun, LIU Canshuai, XIAO Yan, TIAN Zhaohui, FANG Jun . Study on the Deposition Behavior of 690TT Alloy Corrosion Products in the Simulated Oxidation Operation Stage of PWR[J]. Materials Protection, 2023 , 56(10) : 115 -122 . DOI: 10.16577/j.issn.1001-1560.2023.0242
[1] 李平烈, 张竞宇, 杨洪新, 等.pH 值对反应堆活化腐蚀产物源项影响研究[J].原子能科学技术, 2022, 56(12): 2 498-2 507.LI P L,ZHANG J Y,YANG H X,et al.Influence of pH on source term of activated corrosion product in reactor[J].Atomic Energy Science and Technology, 2022, 56(12):2 498-2 507.
[2] 卢叶艇,游兆金,沈亚芳,等.压水堆停堆过程中氧化运行的研究[J].中国核电, 2022, 15(1):89-91.LU Y T, YOU Z J, SHEN Y F, et al.Study on the oxidation operation during shutdown of PWR[J].China Nuclear Power, 2022, 15(1):89-91.
[3] 郭 行, 金卫阳.压水堆核电厂源项控制实践与改进[J].辐射防护, 2021, 41(3): 248-253.GUO H, JIN W Y.Practice and improvement of source term control in a PWR nuclear power plant[J].Radiation Protection, 2021, 41(3): 248-253.
[4] 金 硕.核电站一回路冷却剂中腐蚀产物对管道的沉积研究[D].哈尔滨:哈尔滨工业大学, 2021.JIN S.Deposition of corrosion products in primary coolant of nuclear power plant on pipeline[D].Harbin: Harbin Institute of Technology, 2021.
[5] 马忠英,陆道纲,袁 博,等.压水堆一回路颗粒性腐蚀产物沉积机理的实验研究[J].原子能科学技术, 2015,49(12): 2 239-2 244.MA Z Y, LU D G, YUAN B, et al.Experimental study on deposition mechanism of particle-like corrosion product in primary circuit of PWR[J].Atomic Energy Science and Technology, 2015, 49(12): 2 239-2 244.
[6] FRUZZETTI K.Dispersants for pressurized water reactor secondary side fouling control:sourcebook for online and offline applications[R].Palo Alto:EPRI, 2012.
[7 ] MCELRATH J.Guidelines for the conduct of chemistry at nuclear power stations[R].Atlanta:INPO, 2013.
[8] TSCHILTZ M.Advanced nuclear technology: advanced light water reactor utility requirements document, Revision 13[R].Palo Alto:EPRI, 2014.
[9] LIM K.An Assessment of PWR water chemistry control in advanced plants: AP1000[R].Palo Alto:EPRI, 2010.
[10] AHLUWALIA K.Materials reliability program: mitigation of PWSCC in nickel-base alloys by optimizing hydrogen in the primary water[R].Palo Alto:EPRI, 2007.
[11] GARCIA S.Pressurized Water Reactor Steam Generator Lay-up:Corrosion Evaluation[R].Palo Alto:EPRI, 2007.
[12] REID R.Advanced nuclear technology: assessment of new technologies for water chemmistry controls in advanced pressurized water reactor designs[R].Palo Alto:EPRI, 2015.
[13] 孙 超, 魏君安, 王鸡换.核电厂大修氧化运行分析与改进[J].科技视界, 2018(4): 5-8.SUN C, WEI J A, WANG J H.Analysis and Improvement of Qinshan Nuclear Power Plant Overhaul Oxidation Operation[J].Science & Technology Vision, 2018(4): 5-8.
[14] 张丽莹, 刑 继, 毛亚蔚.压水堆核电站氧化停堆过程一回路冷却剂中58 Co 活度浓度分析[J].辐射防护,2016, 36(4): 206-210.ZHANG L Y, XING J, MAO Y W.Analysis of 58Co activity concentration in primary coolant during PWR oxygenation shutdown[J].Radiation Protection,2016,36(4):206-210.
[15] WELLS D, FRUZZETTI K.Minimization of PWR Radiation Fields through Fuel Deposit Engineering[R].Palo Alto:EPRI, 2013.
[16] ODAR S.Fundamental aspects of water chemistry in the primary system of PWRs[M].Paris: AREVA, 2007.
[17] PARK Y J, CHOI K C, HA Y K.Solubility study of nickel ferrite in boric acid using a flow-through autoclave system under high temperature and high pressure[J].Nuclear Engineering and Technology, 2016, 48(2):554-558.
[18] DANIEL P L, HARPER S L.Use of Pourbaix Diagrams to Infer local pitting conditions[R].Palo Alto: EPRI, 1986.
[19] CUBICCIOTTI D.Potential-pH Diagrams for alloy-water systems under LWR conditions[J].Journal of Nuclear Materials, 1993(201):176-183.
[20] DESHON J.Corrosion Product Transport Model for PWR Primary Circuit Applications[R].Palo Alto: EPRI, 2007.
/
〈 |
|
〉 |