Today is Email Alert  RSS

Fatigue Damage Detection in SLM-Formed Alloy Layers Based on Nonlinear Ultrasonic Technology

Expand
  • (1. Department of Basic Science, Xi’an Siyuan University, Xi’an 710038, China; 2. School of Electronic Engineering, Xidian University, Xi’an 710126, China)

Received date: 2023-04-23

  Revised date: 2023-05-17

  Accepted date: 2023-06-18

  Online published: 2023-10-15

Abstract

Utilizing the ultrasonic nonlinear coefficient, the fatigue damage state of specimens can be accurately determined. This study rapidly assessed the fatigue damage of selective laser melting(SLM) GH4169 nickel-based alloy layers through higher harmonic detection techniques. Results showed that obvious second harmonics were detected when the frequency increased to 10MPa, and the second harmonics formed an amplitude lower than the fundamental wave. Compared with the initial specimen, the amplitude signal was more obvious in the specimen after 20,000 fatigue tests. There were equiaxed crystals, fusion lines, and columnar crystals in the samples, and many columnar crystals were arranged in regular directions. After the fatigue test, there were many fatigue cracks in the substrate, and the second harmonic amplitude also increased significantly. With the extension of the fatigue period, the β/β0 ratio increased. Different from test point 1, the ultrasonic nonlinear coefficients at point 2 and point 3 only showed a small increase trend relative to the fatigue cycle number. The research has a good theoretical support value for improving the fatigue damage detection accuracy of laser melting samples.

Cite this article

ZHANG Xuemin, WANG Feng, GU Li . Fatigue Damage Detection in SLM-Formed Alloy Layers Based on Nonlinear Ultrasonic Technology[J]. Materials Protection, 2023 , 56(10) : 225 -229 . DOI: 10.16577/j.issn.1001-1560.2023.0254

References

[1] 邓德伟,常占东,马云波,等.工艺参数对316L激光熔覆层组织性能及残余应力的影响[J].应用激光,2021,41(1):83-88.DENG D W,CHANG Z D,MA Y B,et al.Influence of process parameters on microstructure and residual stress of 316L laser cladding layer[J].Journal of Applied Laser,2021,41(1):83-88.

[2] 曹四龙,王凌倩,周健松.激光熔覆NiCrMo和NiCrBSi涂层的微观组织及摩擦学性能研究[J].材料保护,2021,54(3):1-8.CAO S L,WANG L Q,ZHOU J S.Microstructure and tribological properties of laser cladding NiCrMo and NiCrBSi alloy coatings [J].Materials Protection,2021,54(3):1-8.

[3] 赵栓峰,郭颖潇,柴蓉霞,等.扫描速度对激光熔覆铁基合金层的组织与性能影响研究[J].应用激光,2020,40(5):811-820.ZHAO S F,GUO Y X,CHAI R X,et al.Research on the effect of scanning speed on microstructure and properties of laser cladding the Fe-base alloy[J].Applied Laser,2020,40(5):811-820.

[4] 杨杰,贺春林,孙宇海漩,等.铜合金表面激光熔覆技术的研究现状[J].材料保护,2022,55(11):133-141.YANG J,HE C L,SUN Y X,et al.Research status of laser cladding technology on the surface of copper alloy [J].Materials Protection,2022,55(11):133-141.

[5] 马国,贾华东,卢长煜,等.磁粉检测与渗透检测在工程机械结构件无损检测中的应用[J].无损检测,2019,41(2):62-64.MA G,JIA H D,LU C Y,et al.Application of Magnetic Particle Detection and Penetration Detection in Nondestructive Testing of Construction Machinery Structural Component[J].Nondestructive Testing,2019,41 (2):62-64.

[6] WANG X R,WANG H,LIANG R Y,et al.A semi-supervised clustering-based approach for stratification identification using borehole and cone penetration test data[J].Engineering Geology,2019,248(8):102-116.

[7] 金玫秀,朱士虎,王通,等.基于卤素灯激励的红外热成像裂纹无损检测研究[J].红外技术,2022,44(4):421-427.JIN M X,ZHU S H,WANG T,et al.Infrared imaging crack nondestructive detection based on halogen lamp excitation [J].Infrared Technology,2022,44(4):421-427.

[8] 许国琛,邓江勇,陈振华,等.钛合金层疲劳裂纹的线性和非线性超声综合定量检测技术[J].电子测量与仪器学报,2022,36(2):196-202.XU G C,DENG J Y,CHEN Z H,et al.Nonlinear and linear ultrasonic comprehensive quantitative detection of fatigue crack in titanium alloy [J].Journal of Electronic Measurement and Instrument,2022,36(2):196-202.

[9] 徐显胜,闫晓玲.选区激光熔化GH4169镍基合金层疲劳损伤非线性超声检测研究[J].制造技术与机床,2021(6):34-38.XU X S,YAN X L.Nonlinear ultrasonic detection for fatigue damage in 316L stainless steel melted by selective laser technology[J].Manufacturing Technology & Machine Tool,2021(6):34-38.

[10] 吕文瀚,吴先梅,陈家熠.金属材料疲劳损伤检测的非线性声学方法[J].应用声学,2018,37(6):874-881.LV W H,WU X M,CHEN J Y.Nonlinear acoustic method for detecting fatigue in metal materials[J].Journal of Applied Acoustics,2018,37(6):874-881.

[11] 阎红娟,刘峰斌,潘勤学.GH4169高温合金层疲劳寿命非线性超声检测研究[J].机械设计与制造,2019(2):127-130.YAN H J,LIU F B,PAN Q X.GH4169 superalloy fatigue life detection using nonlinear ultrasonic[J].Machinery Design & Manufacture,2019(2):127-130.

[12] 傅贵武,王宇华.基于单方向周向兰姆波超声换能器铝管的缺陷定位[J].机械设计与研究,2020,36(2):143-147.FU G W,WANG Y H.Research on aluminum tube defect location based on single directional circumferential lamb wave EMAT[J].Mechanical Design and Research,2020,36(2):143-147.

[13] 贾广辉,袁留奎,常浩,等.基于非线性超声的SLM制备车用合金疲劳损伤检测[J].制造技术与机床,2023(3):184-188.JIA G H,YUAN L K,CHANG H,et al.Fatigue damage detection of SLM alloy based on nonlinear ultrasonic[J].Manufacturing Technology & Machine Tool,2023(3):184-188.

[14] 蒋琳,徐忠根.圆筒内壁激光熔覆工艺的PLC控制与性能[J].材料保护,2020,53(8):89-95.JIANG L,XU Z G.PLC control and properties of laser cladding process for cylinder inner wall[J].Materials Protection,2020,53(8):89-95.

Outlines

/