For studying the stress corrosion susceptibility of high manganese austenitic cryogenic steel HM400 in liquid ammonia medium, the slow strain rate test (SSRT) was used to investigate the stress corrosion susceptibility of high manganese austenitic cryogenic steel HM400 in four media: pure liquid ammonia (NH3), air+liquid ammonia (NH3+Air), 0.1 mg/L H2O+pure liquid ammonia (NH3+0.1 mg/L H2O) and air (Air) at room temperature. The fracture micro morphology, crack morphology, change of microstructure and mechanical properties of the samples before and after tests were characterized by scanning electron microscope (SEM), optical microscope (OM), X-ray diffractometer (XRD) and hardness tester. Results showed that strain strengthening occurred in high manganese austenitic cryogenic steel HM400 during tensile deformation. Moreover, HM400 steel possessed poor stress corrosion resistance in liquid ammonia medium, and hence it was not suitable as high parameterization and lightweight materials of liquid ammonia storage and transportation containers.
HU Pan
,
KONG Wei-hai
,
ZHANG Qiang
,
WU Zhi-gang
,
LIU Yan
. Study on Stress Corrosion Susceptibility of High Manganese Austenitic Cryogenic Steel HM400 in Liquid Ammonia Medium[J]. Materials Protection, 2023
, 56(5)
: 120
-126
.
DOI: 10.16577/j.issn.1001-1560.2023.0115
[1] VALERA-MEDINA A, XIAO H, OWEN-JONES M, et al. Ammonia for power[J]. Progress in Energy and Combustion Science, 2018, 69: 63-102.
[2] 徐也茗, 郑传明, 张韫宏. 氨能源作为清洁能源的应用前景[J]. 化学通报, 2019, 82(3): 214-220.
XU Y M, ZHENG C M, ZHANG Y H. Application Prospect of Ammonia Energy as Clean Energy[J]. Chemistry, 2019, 82(3): 214-220.
[3] 王顺成, 汪艳华. 大型氨站的液氨储存工艺方案选择和优化[J]. 化工技术与开发, 2014 (6): 78-80.
WANG S C, WANG Y H. Selection and Optimization of Liquid Ammonia Storing Procedure for Large Scale Ammonia Station[J]. Technology & Development of Chemical Industry, 2014 (6): 78-80.
[4] AZIZ M, WIJAYANTA A T, NANDIYANTO A B D. Ammonia as effective hydrogen storage: A review on production, storage and utilization[J]. Energies, 2020, 13(12): 3 062.
[5] HG/T 20581-2020, 钢制化工容器材料选用规范[S].
HG/T 20581-2020, Standard for materials selected of steel chemical vessels[S].
[6] SH/T 3075-2009, 石油化工钢制压力容器材料选用规范[S].
SH/T 3075-2009, Specification of material selections for steel pressure vessels in petrochemical industry[S].
[7] ASTM A1106/A1106M-17, Standard Specification for Pressure Vessel Plate, Alloy Steel, Austenitic High Manganese for Cryogenic Application[S].
[8] 莫德敏, 邓建军, 龙 杰, 等. 舞钢LNG船用低温高锰奥氏体钢的开发:第十二届中国钢铁年会论文集-6.先进钢铁材料[C]. 北京:中国金属学会,2019: 130-140.
MO D M, DENG J J, LONG J, et al. Development of Low Temperature High Manganese Austenitic Steel for LNG Marine Use in Wugang: Proceedings of the 12th China Iron and Steel Annual Conference-6. Advanced steel materials[C]. Beijing : The Chinese Society of Metals, 2019: 130-140.
[9] LUO Q, WANG H H, LI G Q, et al. On mechanical properties of novel high-Mn cryogenic steel in terms of SFE and microstructure evolution[J]. Materials Science & Engineering A, 2019, 753: 91-98.
[10] 钢铁标准网. 关于对GB/T 713.1-GB/T 713.7《承压设备用钢板及钢带》等七项国家标准征求意见的函.[EB/OL](2022-06-24)[2022-09-10].https://www.cmsi.org.cn/newsinfo/3020394.html.
Metal Standardization Internet. Letter on Soliciting Opinions on Seven National Standards, including GB/T 713.1-GB/T 713.7 Steel Plates and Strips for Pressure Equipment. [EB/OL](2022-6-24)[2022-09-10]. https://www.cmsi.org.cn/newsinfo/3020394.html.
[11] 王金明, 万响亮, 王红鸿, 等. 冷变形对高锰奥氏体钢组织以及力学性能的影响[J]. 材料热处理学报, 2019, 40(9): 100-106.
WANG J M, WAN X L, WANG H H, et al. Effect of cold deformation on microstructure and mechanical properties of high manganese austenite steel[J]. Transaction of Materials and Heat Treatment, 2019, 40(9): 100-106.
[12] KIM H, HA Y, KWON K H, et al. Interpretation of cryogenic-temperature Charpy impact toughness by microstructural evolution of dynamically compressed specimens in austenitic 0.4C-(22-26) Mn steels[J]. Acta Materialia, 2015, 87: 332-343.
[13] CURTZE S, KUOKKALA V T. Dependence of Tensile Deformation Behavior of TWIP Steels on Stacking Fault Energy, Temperature and Strain Rate[J]. Acta Materialia, 2010, 58(15): 5 129-5 141.
[14] CURTZE S, KUOKKALA V T, OIKARI A,et al. Thermodynamic Modeling of the Stacking Fault Energy of Austenitic Steels[J]. Acta Materialia, 2011, 59(3): 1 068-1 076.
[15] 卢志明, 陈冰冰, 高增梁. 16Mn钢在液氨环境中的应力腐蚀裂纹扩展研究[J]. 材料工程, 2007(10): 7-10.
LU Z M, CHEN B B, GAO Z L. Stress Corrosion Cracking of 16MnR Low Alloy Steel in Anhydrous Ammonia Service[J]. Journal of Materials Engineering, 2007(10): 7-10.
[16] GB/T 30579-2022,承压设备损伤模式识别[S].
GB/T 30579-2022, Damage Modes Identification for Pressure Equipments[S].