[1] YANG X, WANG Z, SHAO L. Construction of Oil-Unidirectional Membrane for Integrated Oil Collection with Lossless Transportation and Oil-in-Water Emulsion Purification[J]. J Membrane Sci, 2018, 549: 67-74.
[2] ZENG X, QIAN L, YUAN X, et al. Inspired by Stenocara Beetles: from Water Collection to High-Efficiency Water-in-Oil Emulsion Separation[J]. ACS Nano, 2017, 11(1): 760-769.
[3] ZUO Y, ZHENG L, ZHAO C, et al. Micro-/Nanostructured Interface for Liquid Manipulation and its Applications[J]. Small, 2020, 16(9): 1903849.
[4] CAI Y, CHEN D, LI N, et al. A Smart Membrane with Antifouling Capability and Switchable Oil Wettability for High-Efficiency Oil/Water Emulsions Separation[J]. J Membrane Sci, 2018, 555: 69-77.
[5] SHI G, SHEN Y, MU P, et al. Effective Separation of Surfactant-Stabilized Crude Oil-in-Water Emulsions by Using Waste Brick Powder-Coated Membranes under Corrosive Conditions[J]. Green Chem, 2020, 22(4): 1 345-1 352.
[6] 李亚东, 徐 征, 范兴祥, 等. 冶金固体废弃物资源化处理与综合利用[J]. 化工设计通讯, 2021, 47(9): 170-171.
LI Y D, XU Z, FAN X X, et al. Resource treatment and comprehensive utilization of metallurgical solid waste[J]. Chemical Design Communication, 2021, 47(9): 170-171.
[7] SU C, LI Y, CAO H, et al. Novel PTFE Hollow Fiber Membrane Fabricated by Emulsion Electrospinning and Sintering for Membrane Distillation[J]. J Membrane Sci, 2019, 583: 200-208.
[8] WANG W, LIU R, CHI H, et al. Durable Superamphiphobic and Photocatalytic Fabrics: Tackling the Loss of Super-Non-Wettability due to Surface Organic Contamination[J]. ACS Appl Mater Interfaces, 2019, 11(38): 35 327-35 332.
[9] YONG J, CHEN F, YANG Q, et al. Superoleophobic Surfaces[J]. Chem Soc Rev, 2017, 46(14): 4 168-4 217.
[10] DOSHI B, SILLANPAA M, KALLIOLA S. A Review of Bio-Based Materials for Oil Spill Treatment[J]. Water Res, 2018, 135: 262-277.
[11] KAKADE B, MEHTA R, DURGE A, et al. Electric Field Induced, Superhydrophobic to Superhydrophilic Switching in Multiwalled Carbon Nanotube Papers[J]. Nano Lett, 2008, 8(9): 2 693-2 696.
[12] MANUKYAN G, OH J M, VAN DEN ENDE D, et al. Electrical Switching of Wetting States on Superhydrophobic Surfaces: A Route Towards Reversible Cassie-to-Wenzel Transitions[J]. Phys Rev Lett, 2011, 106(1): 014501.
[13] ZHANG R, LIU Y, HE M, et al. Antifouling Membranes for Sustainable Water Purification: Strategies and Mechanisms[J]. Chem Soc Rev, 2016,45(21): 5 888-5 924.
[14] LONG Y, SHEN Y, TIAN H, et al. Superwettable Coprinus Comatus Coated Membranes Used toward the Controllable Separation of Emulsified Oil/Water Mixtures[J]. J Membr Sci, 2018, 565: 85-94.
[15] LEE M W, AN S, LATTHE S S, et al. Electrospun Polystyrene Nanofiber Membrane with Superhydrophobicity and Superoleophilicity for Selective Separation of Water and Low Viscous Oil[J]. ACS Appl Mater Interfaces, 2013, 5(21): 10 597-10 604.
[16] LI J, WU R, JING Z, et al. One-Step Spray-Coating Process for the Fabrication of Colorful Superhydrophobic Coatings with Excellent Corrosion Resistance[J]. Langmuir, 2015, 31(39): 10 702-10 707.
[17] LI J, JING Z, YANG Y, et al. From Cassie State to Gecko State: A Facile Hydrothermal Process for the Fabrication of Superhydrophobic Surfaces with Controlled Sliding Angles on Zinc Substrates[J]. Surf Coatings Technol, 2014, 258: 973-978.
[18] SUN Y, GUO Z. Programming Multiphase Media Superwetting States in the Oil-Water-Air System: Evolutions in Hydrophobic-Hydrophilic Surface Heterogeneous Chemistry[J]. Adv Mater, 2020, 32(46): 2004875.
[19] TIE L, LI J, GUO Z, et al. Controllable Preparation of Multiple Superantiwetting Surfaces: From Dual to Quadruple Superlyophobicity[J]. Chem Eng J, 2019, 369: 463-469.
[20] LI J, LI D, YANG Y, et al. A Prewetting Induced Underwater Superoleophobic or Underoil (Super) Hydrophobic Waste Potato Residue-Coated Mesh for Selective Efficient Oil/Water Separation[J]. Green Chem, 2016, 18(2): 541-549.
[21] CHEN F, LU Y, LIU X, et al. Table Salt as a Template to Prepare Reusable Porous Pvdf-Mwcnt Foam for Separation of Immiscible Oils/Organic Solvents and Corrosive Aqueous Solutions[J]. Adv Funct Mater, 2017, 27(41): 1702926.
[22] HOU Y, LI R, LIANG J. Superhydrophilic Nickel-Coated Meshes with Controllable Pore Size Prepared by Electrodeposition from Deep Eutectic Solvent for Efficient Oil/Water Separation[J]. Sep Purif Technol, 2017: 192: 21-29.
[23] 袁 腾,陈 卓,周显宏,等. 基于超亲水超疏油原理的网膜及其在油水分离中的应用[J]. 化工学报, 2014,65(6): 1 943-1 951.
YUAN T ,CHEN Z, ZHOU X H, et al. Retinal membrance based on superhydrophilic and superoleophobic principle and its application in oil-water separation[J]. Acta Chemologica Sinica, 2014,65(6): 1 943-1 951.
[24] GE J L, ZONG D D, JIN Q, et al. Biomimetic and Superwettable Nanofibrous Skins for Highly Efficient Separation of Oil-in-Water Emulsions[J]. Adv Funct Mater, 2018, 28(10): 1705051.
[25] LIU Y, SU Y, GUAN J, et al. Asymmetric Aerogel Membranes with Ultrafast Water Permeation for the Separation of Oil-in-Water Emulsion[J]. ACS Appl Mater Interfaces, 2018, 10(31): 26 546-26 554.
[26] GU J, XIAO P, CHEN J, et al. Robust Preparation of Superhydrophobic Polymer/Carbon Nanotube Hybrid Membranes for Highly Effective Removal of Oils and Separation of Water-in-Oil Emulsions[J]. J Mater Chem A, 2014, 2(37): 15 211-15 648.
[27] LI J, XU C, TIAN H, et al. Blend-Electrospun Poly(Vinylidene Fluoride)/Stearic Acid Membranes for Efficient Separation of Water-in-Oil Emulsions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538: 494-499.
[28] GAO C, SUN Z, LI K, et al. Integrated Oil Separation and Water Purification by a Double-Layer TiO2-Based Mesh[J]. Energy Environ Sci, 2013, 6(4): 1 147-1 151.