[1] 赵运才, 张新宇, 孟 成. 热喷涂金属陶瓷涂层后处理技术的研究进展[J]. 表面技术, 2021, 50(7): 138-148.
ZHAO Y C, ZHANG X Y, MENG C. Research progress of post-treatment technology of cermet coatings by thermal spraying[J]. Surface Technology, 2021, 50(7): 138-148.
[2] IDUMAH C I, OBELE C M, OBUMNEME E E, et al. Recently Emerging Nanotechnological Advancements in Polymer Nanocomposite Coatings for Anti-corrosion, Anti-fouling and Self-healing[J]. Journal of Surfaces and Interfaces of Materials, 2020, 21: 100 734.
[3] 李新星, 王红侠, 于仁红, 等. 不同条件下溶胶-凝胶法合成氧化铝形貌的研究[J].材料导报, 2014, 28(22): 80-84.
LI X X, WANG H X, YU R H, et al. Study on the morphology of alumina synthesized by the sol-gel method under different conditions[J]. Material Guide, 2014, 28(22): 80-84.
[4] GKB A, AS B, DS C, et al. Oxime-modified aluminum (III) isopropoxide: A promising sol-gel precursor coating to improve mechanical strength of an aluminum alloy[J]. Materials Today: Proceedings, 2021, 46: 10 600-10 603.
[5] 刘 富, 相 珺, 张 越, 等. 溶胶凝胶法制备304钢表面陶瓷涂层的耐蚀性研究[J].表面技术, 2017, 46(12): 233-237.
LIU F, XIANG J, ZHANG Y, et al. Study on corrosion resistance of ceramic coating on 304 Steel surface prepared by sol-gel method[J]. Surface Technology, 2017, 46(12): 233-237.
[6] GRISHINA E P, KUDRYAKOVA N O, RAMENSKAYA L M. Thin-film Al2O3 coating on low carbon steel obtained by the sol-gel method with different peptizing acids: Corrosion investigation[J]. Thin Solid Films, 2022, 76: 139 125.
[7] TLILI B, BARKAOUI A, WALOCK M. Tribology and wear resistance of the stainless steel. the sol-gel coating impact on the friction and damage[J]. Tribology International, 2016 102(6): 348-354.
[8] 李 楠, 谢志鹏, 易中周, 等. CeO2稳定ZrO2陶瓷材料的研究进展[J]. 陶瓷学报, 2020, 41(6): 835-848.
LI N, XIE Z P, YI Z Z, et al. Research progress of CeO2 stabilized ZrO2 ceramic materials[J]. Journal of Ceramics, 2020, 41(6): 835-848.
[9] SMS A, GG A, SMSA B, et al. Recent advancements in multifunctional applications of sol-gel derived polymer incorporated TiO2-ZrO2 composite coatings: A comprehensive review-Science Direct[J]. Applied Surface Science Advances, 2021, 6: 100 173.
[10] YM A, AA B, GO A, et al. Characterization of stabilized ZrO2 thin films obtained by sol-gel method-Science Direct[J]. Applied Surface Science, 2021, 569: 150 787.
[11] ZHANG Z H, JI G J. Electrochemical corrosion and frictional corrosion properties of sol-gel ZrO2 films on stainless steel surface in different NaCl aqueous solutions[J]. Rare Metal Materials and Engineering, 2020, 49(11): 3 748-3 760.
[12] CHECMANOWSKI J G, SZCZYGIEL B. Effect of a ZrO2 coating deposited by the sol-gel method on the resistance of FeCrAl alloy in high-temperature oxidation conditions[J]. Materials Chemistry & Physics, 2013, 139 (2/3): 944-952.
[13] PRASAD A R, SHAMSHEERA K O, JOSEPH A. Electrochemical and surface characterization of mild steel with corrosion resistant zirconia network fabricated by aqueous sol-gel technique[J]. Journal of the Indian Chemical Society, 2021, 98(4): 100 052.
[14] STAMBOLOVA I, YORDANOV S, LAKOV L, et al. Preparation of sol-gel SiO2 coatings on steel and their corrosion resistance[J]. Matec Web of Conferences, 2018, 145: 05 011.
[15] BRAGA A, LAGO D, PIMENTA A R, et al. The influence of heat treatment of inorganic conversion coatings produced by sol-gel dip coating on the anticorrosive properties of alumina films deposited on steel substrate-Part I: Single conversion coatings[J]. Surface and Coatings Technology, 2019, 372: 190-200.
[16] 王 萌, 董选普, 杨 帆, 等. 溶胶-凝胶法制备铝合金陶瓷涂层[J].特种铸造及有色合金, 2015, 35(4) : 427-430.
WANG M, DONG X P, YANG F, et al. Aluminum alloy ceramic coating was prepared by the sol-gel method[J]. Special Casting and Nonferrous Alloy, 2015, 35(4): 427-430.
[17] LUTZLER T, CHARPENTIER T, BARKER R, et al. Evaluation and Characterization of Anti-Corrosion Properties of Sol-Gel Coating in CO2 Environments[J]. Materials Chemistry and Physics, 2018, 216: 272-277.
[18] 崔丽华. 溶胶-凝胶法制备TiO2薄膜的研究[J].佛山陶瓷, 2015, 25(2): 13-15.
CUI L H. Preparation of TiO2 thin films by the sol-gel method[J]. Foshan Ceramics, 2015, 25(2): 13-15.
[19] BESTETTI M, SACCO D, BRUNELLA M F, et al. Photocatalytic degradation activity of titanium dioxide sol-gel coatings on stainless steel wire meshes[J]. Materials Chemistry & Physics, 2010, 124(2/3): 1 225-1 231.
[20] SKH A, VKV B, RV C, et al. Effect of processing conditions on the structural properties and corrosion behavior of TiO2-SiO2 multilayer coatings derived via the sol-gel method-Science Direct[J]. Ceramics International, 2020, 46(11): 17 741-17 751.
[21] KARASINSKI P, TYSZKIEWICZ C, DOMANOWSKA A, et al. Low loss, long time stable sol-gel derived silica-titania waveguide films[J]. Materials Letters, 2015, 143(15): 5-7.
[22] 尹春生, 姚正军, 方 超, 等. 高温合金GH3039表面ZrO2-CeO2/Al2O3复合陶瓷涂层抗热震性能[J]. 复合材料学报, 2018, 35(11): 8.
YIN C S, YAO Z J, FANG C, et al. Thermal shock resistance of ZrO2-CeO2/Al2O3 composite ceramic coating on superalloy GH3039 surface[J]. Journal of Composites, 2018, 35(11): 8.
[23] YANG T C, CHIN T S, CHANG J K, et al. Oxidation resistance of Al2O3/SiO2 nanocomposite coating on hot-dip galvanized steel deposited by chemical immersion and sol-gel coating-Science Direct[J]. Surface and Coatings Technology, 2020, 404: 126 457.
[24] SK A, LBC B, AM A, et al. The effect of the substrate surface state on the morphology, topography and tribocorrosion behavior of Si/Zr sol-gel coated 316L stainless steel-ScienceDirect[J]. Surface and Coatings Technology, 2021, 406: 126 666.
[25] MY A, OO B, TY C, et al. Effect of sol aging time on the wear properties of TiO2-SiO2 composite films prepared by a sol-gel method[J]. Tribology International, 2016, 104: 175-182.
[26] VIVES S, MEUNIER C.Mixed SiO2-TiO2 (1:1) sol-gel films on mild steel substrates: Sol composition and thermal treatment effects[J]. Surface and Coatings Technology, 2008, 202(11): 2 374-2 378.
[27] AVCB A, DCBDL A, ARP B, et al. The influence of heat treatment of inorganic conversion coatings produced by sol-gel dip coating on the anticorrosive properties of alumina films deposited on steel substrate-Part II: silica/boehmite or boehmite/silica multilayered conversion coatings[J]. Surface and Coatings Technology, 2020, 386: 125 500.