Today is Email Alert  RSS

Corrosion of the Aluminum Alloy Wheel Hub in Typical Atmospheric Environments and the Prevention Methods

  • LI Jia-wei ,
  • LU Dong-zhu ,
  • WANG Yu-ping ,
  • LI Ting-ting ,
  • HUANG Yan-liang ,
  • HOU Bao-rong
Expand
  • 1. CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
    2. Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China;
    3. School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
    4. Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China;
    5. Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning 530007, China;
    6. Research and Development Center of Marine Science and Technology, Nantang Zhongke, Nantong 226006, China;
    7. Baoding Lizhong Wheel Manufacturing Co., Ltd., Baoding, 071000, China

Received date: 2022-12-10

  Revised date: 2023-01-05

  Accepted date: 2023-02-08

  Online published: 2023-07-14

Abstract

With the rapid development of science and technology, wheel hubs of automobile are also developing towards lightweight and convenient. Aluminum alloys are increasingly used in wheel hubs due to their excellent performance, but the corrosion of aluminum alloy wheel hubs is still a big problem. This work briefly introduced several common corrosion types of aluminum alloy wheel hubs (filiform corrosion, pitting corrosion, grain boundary corrosion, stress corrosion, peeling corrosion). The influence of atmospheric environmental factors on the corrosion of aluminum alloy wheel hubs was introduced. Furthermore, the corrosion of different types of aluminum alloys in typical atmospheric environments at home and abroad, and the anti-corrosion methods of substrate modification and surface treatment for aluminum alloy wheel hubs were described.

Cite this article

LI Jia-wei , LU Dong-zhu , WANG Yu-ping , LI Ting-ting , HUANG Yan-liang , HOU Bao-rong . Corrosion of the Aluminum Alloy Wheel Hub in Typical Atmospheric Environments and the Prevention Methods[J]. Materials Protection, 2023 , 56(5) : 180 -190 . DOI: 10.16577/j.issn.1001-1560.2023.0122

References

[1] 黄伯云. 有色金属材料手册 [M].北京:化学工业出版社, 2009:109.
HUANG B Y. Handbook of Nonferrous Materials [M]. Beijing: Chemical Industry, 2009: 109.
[2] MITRA R. Intermetallic Matrix Composites: Properties and Applications[M]. [s.l.]:Elsevier, 2017.
[3] 刘艳洁,王振尧. 2024-T3 铝合金在模拟海洋大气环境中的腐蚀行为[J]. 中国有色金属学报, 2013, 23(5): 1 208-1 216.
LIU Y J, WANG Z Y. Corrosion behavior of 2024-T3 aluminum alloy in simulated marine atmospheric environment [J]. The Chineses Journal of Nonferrous Metals, 2013, 23: 1 208-1 216.
[4] 赵恒义, 周天西.液态模锻工艺及发展应用现状 [J].热加工工艺, 2000(2): 45-46.
ZHAO H Y, ZHOU T X. Liquid die forging process and its development and application status [J]. Hot Working Technology, 2000(2): 45-46.
[5] 答建成, 周细应, 彭以阳, 等. 固溶时效工艺对 A356 铝合金轮毂组织与性能的影响 [J].热加工工艺, 2016, 45(14): 184-186.
DA J C, ZHOU X Y, PENG Y Y, et al. Effect of solution aging process on the microstructure and properties of A356 aluminum alloy wheel [J]. Hot Working Technology, 2016, 45(14): 184-186.
[6] 于小健, 沈 坚, 周文军, 等. Y对A356 合金除气效果和耐腐蚀性能的影响 [J].特种铸造及有色合金, 2017, 37(12): 1 389-1 392.
YU X J, SHEN J, ZHOU W J, et al. Effect of Y on degassing effect and corrosion resistance of A356 alloy [J]. Special-Cast and Non-Ferrous Alloys, 2017, 37(12): 1 389-1 392.
[7] 欧翅翔, 汪樟锋, 刘锋睿, 等. A356 铝合金轮毂 Si 偏析现象及力学性能 [J].有色金属科学与工程, 2020,11(1):60-66.
OU Y X, WANG Z F, LIU F R, et al. Si Segregation Phenomenon and Mechanical Properties of A356 Aluminum Alloy Wheel Hub [J]. Nonferrous Metals Science and Engineering,2020,11(1):60-66.
[8] 马欣宇, 张 星, 周 莉, 等. 挤压铸造铝轮毂的技术研究 [J]. 特种铸造及有色合金, 2007(增刊1): 292-195.
MA X Y, ZHANG X, ZHOU L, et al. Technical research on squeeze casting of aluminum wheel hub [J]. Special-Cast and Non-Ferrous Alloys, 2007(Suppl 1): 292-295.
[9] 史自立. 中国汽车铝轮毂行业发展前景分析[R]. [出版地不详]:经济经纬, 2004(3): 61-64.
SHI Z L. Analysis on the Development Prospect of China's Automobile Aluminum Hub Industry [R]. [s.l.]: Economic Survey, 2004(3): 61-64.
[10] 侯保荣, 路东柱.我国腐蚀成本及其防控策略 [J].中国科学院院刊, 2018, 33(6): 601-609.
HOU B R, LU D Z. Corrosion cost and its prevention and control strategy in China [J]. Bulletin of Chinese Academy of Sciences, 2018, 33(6): 601-609.
[11] 郭初蕾. 新型铝合金在典型环境中的大气腐蚀行为研究 [D]. 北京:北京有色金属研究总院, 2013.
GUO C L. Research on atmospheric corrosion behavior of new aluminum alloys in typical environments [D]. Beijing: General Research Institute for Nonferrous Metals, 2013.
[12] 周和荣, 李晓刚, 董超芳. 铝合金及其氧化膜大气腐蚀行为与机理研究进展 [J]. 装备环境工程, 2006, 3(1): 1-9.
ZHOU H R,LI X G,DONG C F.Review of atmospheric corrosion behavior and mechanism of aluminum alloys and it's anodic film [J].Equip Environ Eng, 2006,3(1):1-9.
[13] JIANG Q, LU D, WANG N, et al. The corrosion behavior of Mg-Nd binary alloys in the harsh marine environment [J]. Journal of Magnesium and Alloys, 2021, 9(1): 292-304.
[14] 高 蒙, 孙志华, 刘 明, 等. 7B04 铝合金在 NaCl 沉积与 SO2 环境下的大气腐蚀行为 [J]. 环境技术, 2016,34(5): 9-13.
GAO M, SUN Z H, LIU M, et al.Atmospheric corrosion behavior of 7B04 aluminum alloy in the presence of NaCl and SO2[J].Environ Technol,2016,34(5):9-13.
[15] ESMAILY M, SHAHABI-NAVID M, SVENSSON J E, et al. Influence of temperature on the atmospheric corrosion of the Mg-Al alloy AM50 [J]. Corrosion Science, 2015, 90: 420-433.
[16] 韩福余. 铝合金表面丝状腐蚀机制的研究 [D]. 秦皇岛:燕山大学, 2015.
HAN Y. Study on Filamentous Corrosion Mechanism of Aluminum Alloy Surface [D]. Qinhuangdao: Yanshan University, 2015.
[17] 周 松, 许 良, 回 丽, 等.不同腐蚀环境下高强铝合金腐蚀行为 [J]. 中国机械工程, 2017, 28(16): 2 000.
ZHOU S, XU L, HUI L, et al. Corrosion Behavior of High Strength Aluminum Alloys in Different Corrosion Environments [J]. China Mechanical Engineering, 2017,28 (16): 2 000.
[18] 杜爱华, 龙晋明,裴和中. 高强铝合金应力腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2008, 28(4): 251-256.
DU A H, ZUO J M, PEI H Z. Research progress in stress corrosion cracking of high-strength aluminum alloys[J]. Journal of Chinese Society for Corrosion and Protection, 2008, 28 (4): 251-256.
[19] 李 获, 左尚志, 郭宝兰. LY12 铝合金剥蚀行为的研究 [J].中国腐蚀与防护学报, 1995, 15(3): 203-209.
LI D, ZUO S Z, GUO B L. Study on denudation behavior of LY12CZ aluminum alloy [J]. Journal of Chinese Society for Corrosion and Protection, 1995,15(3): 203-209.
[20] 曾荣昌, 韩恩厚. 材料的腐蚀与防护 [M]. 北京:化学工业出版社, 2006:45-47.
ZENG R C, HAN E H. Corrosion and Protection of Materials [M]. Beijing: Chemical Industry Press, 2006:45-47.
[21] GALVELE J, DE DE MICHELI S J C S. Mechanism of intergranular corrosion of Al-Cu alloys [J]. Corrosion Science, 1970, 10(11): 795-807.
[22] BUCHHEIT R, MORAN J, STONER G J C. Electrochemical behavior of the T1 (Al2CuLi) intermetallic compound and its role in localized corrosion of Al-2% Li-3% Cu alloys [J]. Corrosion, 1994, 50(2): 120-130.
[23] KOWAL K, DELUCCIA J, JOSEFOWICZ J, et al. In situ atomic force microscopy observations of the corrosion behavior of aluminum-copper alloys [J]. Journal of The Electrochemical Society, 1996, 143(8): 2 471.
[24] 苏景新, 彭晓东, 谢卫东, 等. 超高强度铝合金的应力腐蚀开裂 [J].机械工程材料. 2003, 27(6): 8-10.
WEI Q Y, PENG X D, XIE W D, et al Stress corrosion cracking of ultra-high strength aluminum alloy [J]. Materials for Mechanical Engineering, 2003, 27(6): 8-10.
[25] 魏群义, 彭晓东, 谢卫东, 等. 超高强度铝合金的应力腐蚀开裂 [J]. 2003, 27(6): 8-10.
WEI Q Y, PENG X D, XIE W D, et al. Stress corrosion cracking of ultra-high strength aluminum alloy [J]. Materials for Mechanical Engineering, 2003, 27(6):8-10.
[26] 左景伊. 应力腐蚀破裂 [M]. 西安:西安交通大学出版社, 1985.
ZUO J Y. Stress corrosion cracking [M]. Xi'an: Xi'an Jiaotong University Press, 1985.
[27] 闰求根, 何国斌. 飞机结构的剥蚀及其修理 [J]. 航空与航天, 1991,13(4): 53-60.
YAN G Q, He G B. Aircraft structure denudation and repair [J]. Journal of Beijing University of Aeronautics and Astronautics, 1991, 13(4): 53-60.
[28] LIU T, ROBINSON J, MCCARTHY M J J O M P T. The influence of hot deformation on the exfoliation corrosion behaviour of aluminium alloy 2025 [J]. Journal of Materials Processing Technology, 2004, 153: 185-192.
[29] DE LA FUENTE D, OTERO-HUERTA E, MORCILLO M J C S. Studies of long-term weathering of aluminium in the atmosphere [J]. Corrosion Science 2007, 49(7): 3 134-3 148.
[30] 钟 勇, 苏 艳, 罗来正, 等. 四种典型大气环境下 7B50 铝合金的腐蚀行为研究 [J]. 装备环境工程, 2021, 18(11): 143-150.
ZHONG Y, SU Y, LUO L Z, et al. Study on corrosion behavior of 7B50 aluminum alloy in four typical atmospheric environments [J]. Equipment Environment Engineering, 2021,18 (11): 143-150.
[31] ELOLA A, OTERO T, PORRO A J C. Evolution of the pitting of aluminum exposed to the atmosphere [J]. Corrosion, 1992, 48(10): 854-863.
[32] ELOLA A, OTERO T, PORRO A J M, et al. Corrosion caused by the atmosphere on 1050 aluminum in the Basque country [J]. Materials and Corrosion, 1993, 44(1): 10-19.
[33] 李 波, 樊 磊, 孙 博,等.高腐蚀条件下用铝合金材料腐蚀机理[J]. 重庆大学学报,2022,45(3):1-13.
LI B, FAN L, SUN B, et al. Corrosion mechanism of aluminum alloy materials under high corrosion conditions [J]. Journal of Chongqing University,2022,45(3):1-13.
[34] WANG B, WANG Z, CAO G, et al. Localized corrosion of aluminum alloy 2024 exposed to salt lake atmospheric environment in western China [J]. Acta Metall Sin, 2014, 50(1): 49-56.
[35] HU S, SUN S, GUO A, et al. Atmospheric Corrosion Behavior of Extruded Aluminum Alloy 7075-T6 After Long-Term Field Testing in China [J]. Corrosion, 2011, 67(10): 106 002-106 010.
[36] 赵全成, 罗来正, 黎小锋, 等. 两种典型大气环境下7A85 铝合金的腐蚀行为研究 [J].装备环境工程,2020, 17(7): 70-75.
ZHAO Q C, LUO L Z, LI X F, et al. Study on Corrosion Behavior of 7A85 Aluminum Alloy in Two Typical Atmospheric Environments [J]. Equipment Environment Engineering, 2020,17 (7): 70-75.
[37] 朱红嫚, 郑弃非,谢水生. 万宁地区铝及铝合金不同距海点的大气腐蚀研究 [J].中国稀有金属学报, 2002, 26(6): 456-459.
ZHU H M, ZHENG Q F, XIE S S. Study on atmospheric corrosion of aluminum and aluminum alloys at different distances from sea [J]. Chinese Journal of Rare Metals, 2002, 26(6): 456-459.
[38] 周和荣, 马 坚, 陆启凯, 等. 典型铝合金在江津自然大气环境中的腐蚀行为研究 [J].装备环境工程, 2009, 6(3): 10-14.
ZHOU H R, MA J, LU Q K, et al. Study on Corrosion Behavior of Typical Aluminum Alloys in Jiangjin Natural Atmospheric Environment [J]. Equipment Environment Engineering, 2009, 6(3): 10-14.
[39] 张厚敏. 出口北美盐害地区本田汽车轮毂用铝合金生产工艺 [M]. 秦皇岛:秦皇岛开发区美铝合金有限公司,2013.
ZHANG H M. The production process of aluminum alloy for Honda automobile wheels exported to salt damaged areas in North America Hebei Province[M]. Qinhuangdao: Qinhuangdao Development Zone Alcoa Alloy Co Ltd, 2013.
[40] 杨 浪, 赵起越, 贺 建, 等. 6061 铝合金在模拟工业-海洋大气环境下的腐蚀研究[J]. 2018, 37(1): 28-34.
YANG L, ZHAO Q Y, HE J, et al. Corrosion of 6061 aluminum alloy in simulated industrial-marine atmospheric environment [J]. 2018, 37(1): 28-34.
[41] ZHAO Q, GUO C, NIU K, et al. Long-term corrosion behavior of the 7A85 aluminum alloy in an industrial-marine atmospheric environment [J]. Journal of Materials Research and Technology, 2021, 12: 1 350-1 359.
[42] 王 力, 董超芳, 张达威, 等. 合金元素对铝合金在泰国曼谷地区初期腐蚀行为的影响 [J].金属学报, 2020, 56(1): 119-128.
WANG L, DONG C F, ZHANG D W, et al. Effect of alloy elements on initial corrosion behavior of aluminum alloys in Bangkok, Thailand [J]. Acta Metallurgica Sinica, 2020,56(1): 119-128.
[43] AILOR W H. Atmospheric corrosion[M]. New York: John Wiley & Sons, Inc, 1982: 841.
[44] 萧彧星, 萧以德, 王树宗, 等.材料腐蚀数据积累及其在工程建设中的应用 [J]. 涂料工业, 2009(8): 59-62.
XIAO H X, XIAO Y D, WANG S Z, et al. Accumulation of material corrosion data and its application in engineering construction[J]. Paint & Coatings Industry, 2009(8): 59-62.
[45] EL-MAHDY G A, NISHIKATA A, TSURUTJCS. Electrochemical corrosion monitoring of galvanized steel under cyclic wet-dry conditions [J]. Corrosion Science, 2000, 42(1): 183-194.
[46] 刘 莉. 铝合金 Sc, Zr 微合金化效应与微观机理 [D]. 哈尔滨:哈尔滨工业大学, 2020.
LIU L. Microalloying effect and micro mechanism of aluminum alloy Sc and Zr [D]. Harbin: Harbin University of Technology, 2020.
[47] BOVARD F S. Environmentally induced cracking of an Al-Zn-Mg-Cu alloy [D]. Pittsburg: University of Pittsburgh, 2006.
[48] ROMETSCH P A, ZHANG Y, KNIGHT S,et al. Heat treatment of 7xxx series aluminium alloys—Some recent developments [J]. Transactions of Nonferrous Metals Society of China, 2014, 24(7): 2 003-2 017.
[49] 邓志威, 薛文彬, 汪新福, 等. 铝合金表面微弧氧化技术 [J].材料保护, 1996, 29(2): 15-16.
DENG Z W, XUE W B, WANG X F, et al. Micro arc oxidation technology for aluminum alloy surface [J]. Material Protection, 1996, 29 (2): 15-16.
[50] 韩东锐, 张 波, 欧家才, 等. 微弧氧化铝合金在海水中的腐蚀行为 [J]. 腐蚀与防护, 2010, 31(6): 452-454.
HAN D R, ZHANG B, OU J C, et al. Corrosion behavior of micro arc aluminum alloy in seawater [J]. Corrosion & Protection, 2010, 31(6): 452-454.
[51] 刘新宽, 向阳辉, 王渠东, 等. Mg合金的防蚀处理 [J]. 腐蚀科学与防护技术, 2001, 13(4): 211-213.
LIU X K, XIANG Y H, WANG Q D, et al. Anti corrosion treatment of Mg alloy [J]. Corrosion Science and Protection Technology, 2001, 13(4): 211-213.
[52] 刘新宽, 向阳辉, 胡文彬, 等. 镁合金化学镀镍磷研究 [J]. 宇航材料工艺, 2001, 31(4): 21-25.
LIU X K, XIANG Y H, HU W B, et al. Study on electroless nickel phosphorus plating on magnesium alloy [J]. Aerospace Materials and Technology, 2001,35(4): 21-25.
[53] 余 刚, 刘跃龙, 李 瑛, 等. Mg合金的腐蚀与防护 [J].中国有色金属学报, 2002, 12(6): 1 087-1 098.
YU G, LIU Y L, LI Y. Corrosion and protection of Mg alloys [J]. The Chinese Journal of Nonferrous Metals, 2002, 12(6): 1 087-1 098.
[54] LU D, ZHANG Q, WANG X, et al. Intermetallic layer obtained by the compact powder diffusion alloying method on AZ91D magnesium alloy in air [J]. Surface and Coatings Technology, 2017, 309: 986-993.
[55] 李志强, 李 晟, 段天应, 等. 5083 铝合金热喷涂金属涂层厚度无损测量 [J].材料开发与应用, 2020, 35(3): 57-61.
LI Z Q, LI S, DUAN T Y, et al. 5083 Nondestructive Measurement of Thickness of Aluminum Alloy Thermal Spraying Metallic Coatings [J]. Development and Application of Materials, 2020, 35(3): 57-61.
[56] NIU L Y, LI G Y, JIANG Z H, et al. Influence of sodium metanitrobenzene sulphonate on structures and surface morphologies of phosphate coating on AZ91D [J]. Transactions of Nonferrous Metals Society of China, 2006, 16(3): 567-371.[57] 潘建华, 钱苗根. 复合涂层技术在铝合金轮毂生产中的应用 [J]. 上海涂料, 2008, 46(11): 18-20.
PAN J H, QIAN M G. Application of composite coating technology in the production of aluminum alloy wheels [J]. Shanghai Coatings, 2008,46(11):18-20.
[58] 李家柱. 大气环境及腐蚀性 [J]. 装备环境工程, 2005, 2(1): 70-74.
LI J Z. Atmospheric Environment and Corrosion [J]. Equipment Environmental Engineering, 2005,2(1): 70-74.
[59] KETCHAM S. Accelerated laboratory corrosion test for materials and finishes used in naval aircraft [R]. PA: Naval Air Development Center, 1977.
[60] MORRIS A. Corrosion control test method for avionic components [R]. St. Louis:Mcdonnell Aircraft Co St Louis Mo, 1981.
[61] 毛协民. 汽车轮毂用 A356 铝合金特点[J].资源再生, 2010(11): 74-77.
MAO X M. Characteristics of A356 aluminum alloy for automobile wheels [J]. Resource Recycling, 2010(11): 74-77.
Outlines

/